首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We examined historical patterns of gene flow in the freshwater fish Poecilia butleri in western Mexico. We tested the hypothesis that the boundaries between four freshwater ecological communities (ecoregions) might have limited the movement of P. butleri because changes in species compositions might restrict establishment between adjacent ecoregions, even in situations where a physical barrier is absent. Hence, we predicted that boundaries between ecoregions should correspond to phylogeographical breaks in P. butleri. We also tested the hypothesis that the width of the continental shelf affected historical gene flow in P. butleri because a broad continental shelf provides a greater opportunity for rivers to coalesce during historical episodes of low sea levels as opposed to a narrow continental shelf that should restrict the potential for gene flow among adjacent rivers. Hence, we predicted greater amounts of historical gene flow among neighbouring river basins in the region of western Mexico where the continental shelf is wider, whereas, in the region where the continental shelf is narrower, we expected to detect limited levels of historical gene flow. We analyzed mitochondrial DNA sequence data (cytochrome b) taken from 264 individuals of P. butleri collected from 34 locations distributed across four different ecoregions in western Mexico. To examine patterns of phylogenetic diversification and historical gene flow in P. butleri, we employed several analytical approaches, including traditional tree‐based phylogenetic analyses (likelihood and parsimony), haplotype network reconstruction, analyses of molecular variance, and spatial analysis of molecular variance. We found genetic breaks coinciding with two out of three different ecoregion boundaries, suggesting limited historical gene flow. In addition to different species compositions between these adjacent ecoregions, geological features such as the Trans‐Mexican Volcanic Belt and the mountainous topography in south‐western Mexico, likely contributed to these observed genetic breaks. By contrast, no genetic break was evident between two other ecoregions, a result that partially rejects our first hypothesis. Several results were consistent with our second hypothesis. Changes in the width of the continental shelf in western Mexico are associated with the observed patterns of historical gene flow. Our results indicate that the interactions among multiple geological and biological factors affect the spatial patterns of genetic diversity of widespread freshwater species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 399–416.  相似文献   

2.
The present study aims to depict the overall pattern of Acomys history in south-western Sahara. We tested the specific predictions that: (1) several mitochondrial clades can be identified and that they coincide with the described species; (2) successive phases of desert expansion and contraction during the last 3 Myr have resulted in several phases of demographic expansion and population fragmentation in Acomys ; and (3) isolation-by-distance occurs. The extent of phylogeographic patterns and molecular genetic diversity (cytochrome b gene and D-loop) were addressed in a survey of 90 individuals of Acomys from 38 localities. Our phylogeographical analyses show a strong genetic structure within western Saharan Acomys , with several phylogroups displaying non-overlapping geographic distributions. Restricted gene flow with isolation-by-distance was recorded and a signal of population expansion was detected within several clades. We suggest that during arid or semi-arid paleoclimatic periods, when large sandy areas were present, Acomys was restricted to rocky massifs, whereas, in more humid periods, when savannah and/or steppe habitat prevailed, this species was able to disperse and to survive outside rocky areas because food resources were abundant. Based on a comprehensive sampling and the use of an integrative approach (i.e. combining cytogenetic, molecular and morphological data), we firmly propose that Acomys airensis should be considered as a junior synonym of Acomys chudeaui .  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 29–46.  相似文献   

3.
Phylogenetic analyses based on mtDNA cytochrome  b were performed in 42 lizards of the Gymnodactylus darwinii complex from three regions within Brazil's Atlantic Forest. Mainland regions and continental shelf islands in the south-eastern range and mainland areas from the north-east were sampled. The criteria of maximum parsimony (MP), maximum likelihood (ML) and Bayesian methods were explored, with the robustness for nodes assessed by bootstrapping (MP and ML) and posterior probabilities (Bayesian searches). By all methods, three distinctive phylogroups were recovered: a south-eastern clade (SE) and two clades from northern regions (NE1 and NE2). The pattern of genetic structure of the major clades coincided with the presence of river systems in the Atlantic Forest, and based on corrected genetic distances between those clades, divergence times were tentatively estimated using mtDNA rates calibrated for squamate reptiles. The putative role of Atlantic Forest rivers in generating differentiation is discussed. We present a hypothesis of species limits for G. darwinii , based on concordant lines of evidence including cytogenetic and mtDNA analyses. Two chromosome races (cytotype A, 2n = 38; and cytotype B, 2n = 40) had distributions concordant with clades SE and NE1 + NE2, respectively. These races are interpreted to be full species on the basis of a number of empirical criteria.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 13–26.  相似文献   

4.
Australo-Papuan tube-nosed fruit bats of the genus Nyctimene reach their most westerly distribution on the island archipelagos of eastern Indonesia. A recent morphological examination indicates three species occur on Moluccan islands. Both allozyme electrophoresis and mitochondrial DNA (mtDNA) sequencing reveal there are only two species present, Nyctimene cephalotes and Nyctimene albiventer , but there is considerable disparity between the results obtained from the two genetic data sets. Allozyme data indicate N. albiventer occurs on Wokam, which sits on the Australian continental shelf and was joined to Australo-Papua during the last glacial maximum, and N. cephalotes on the other Moluccan islands, all of which are off the continental shelf. Divergence of these two species is dated at approximately 1.5 Mya. By contrast, the mtDNA gene tree shows two deep clades, one containing all specimens from Wokam and Yamdena, and the second all the specimens from the other islands. This especially marked incongruence between the two genetic data sets is ascribed to either a single introgression event of N. albiventer mtDNA into N. cephalotes on Yamdena at around 100 000 ya or lineage sorting of very old mtDNA lineages that coalesce a rather long time before the speciation event. These results highlight that caution should be exercised when relying on mtDNA as barcodes in species taxonomy. The continental-associated N. albiventer on Wokam has higher levels of allozyme heterozygosity and mtDNA nucleotide diversity than the N. cephalotes populations occurring on the more remote islands, indicating that this colonizing species has experienced bottlenecks and/or a low effective population size since speciation.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 589–602.  相似文献   

5.
The yabby, Cherax destructor Clark, is the most widespread species in the most widespread genus of Australian freshwater crayfish. It has a distribution that spans several distinct drainage basins and biogeographical regions within semiarid and arid inland Australia. Here we report a study designed to investigate patterns of genetic variation within the species and hypotheses put forward to account for its extensive distribution using DNA sequences from the mitochondrial 16S rRNA gene region. Results of phylogenetic analyses contradicted previous allozyme data and revealed relatively deep phylogenetic structure in the form of three geographically correlated clades. The degree of genetic divergences between clades (8–15 bp) contrasted with the relatively limited haplotype diversity within clades (1–3 bp). Network-based analyses confirmed these results and revealed genetic structure on both larger and more restricted geographical scales. Nevertheless some haplotypes and 1-step clades had large distributions, some of which crossed boundaries between river basins and aquatic biogeographical regions. Thus both older and more recent historical processes, including fragmentation on a larger geographical scale and more recent range expansion on a local scale, appear to be responsible for the observed pattern of genetic variation within C. destructor . These results support elements of alternative hypotheses previously put forward to account for the evolutionary history of C. destructor and the origin of its large distribution.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 539–550.  相似文献   

6.
We used mtDNA and isozyme analysis of a freshwater fish, Galaxias divergens (Osmeriformes: Galaxiidae), to test a hypothesis of drainage evolution in South Island, New Zealand. Geological evidence indicates that the presently north-flowing Kaituna River branch of the Pelorus River system once flowed south into the Wairau River system. The subsequent flow-reversal is thought to have resulted from Pleistocene subsidence in central New Zealand. mtDNA sequence data corroborated this geological hypothesis: rivers draining into Pelorus Sound were found to retain a genetic lineage of G. divergens that is otherwise restricted to the Wairau River system and adjacent coastal drainages (based on current sampling). Other sampled drainages in northern South Island and southern North Island were found to house lineages that were highly divergent from the Wairau–Pelorus clade. Isozyme data yielded groupings based on fixed differences that were largely congruent with mtDNA clades. Standard molecular calibrations suggest that vicariant isolation of Pelorus and Wairau systems (drainage reversal) occurred in the mid-Pleistocene rather than the late Pleistocene as suggested by geology. Future multidisciplinary analyses will aim to improve our understanding of geological and molecular evolutionary rates.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 88 , 367–376.  相似文献   

7.
Populations of the Australian freshwater snail Notopala sublineata (Conrad, 1850) have declined rapidly over the last decade, but are still abundant in most river systems of Western Queensland. These rivers are characterized by the unpredictable and highly variable nature of their climatic and hydrological regimes, with episodic periods of very large flow and many periods of little or no flow. We used mitochondrial sequences and allozymes to investigate the genetic structure and infer patterns of dispersal of N. sublineata within this unique environment. We sampled 24 waterholes throughout the four major catchments of the Lake Eyre Basin. Based on a 457-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, we identified 55 haplotypes in a sample of 256 individuals. Both nuclear and mitochondrial genetic datasets indicated high levels of genetic subdivision and restricted gene flow among populations within and among catchments. The mitochondrial haplotypes clustered into two main geographical clades, corresponding with two groups of adjacent catchments: Cooper–Bulloo and Diamantina–Georgina, which appear to have diverged 300 000 years ago. Populations of N. sublineata within these adjacent catchments seem to have diverged relatively recently, roughly 130 000 years ago. Contemporary dispersal seems to be absent between catchments but we suggest that climate fluctuations during the Pleistocene resulted in extensive floods that promoted historical movement of aquatic organisms across catchment boundaries.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 1–16.  相似文献   

8.
Pleistocene glaciations produced significant increases in continental ice cover in polar and mid‐latitude temperate areas, sea‐level declines and shifts and reshuffling of biomes, all of which promote either isolation, coalescence or fragmentation in the distribution of land biota. If populations of several taxa have been co‐distributed for a prolonged time, and if the periods between perturbation or vicariance processes have been more or less stable, it is expected that divergence patterns of closely related and ecologically similar species will be congruent because of their similar biological and demographic characteristics. Based on this premise, we analysed the phylogeographic structure (cytochrome b) of Liolaemus pictus and Batrachyla leptopus, two widely co‐distributed lizard and frog species, respectively, in the Chiloé Archipelago of southern Chile, to decipher their genetic structure in response to a common climatic and environmental history. Haplotype network analysis and Bayesian inference suggest an evolutionary pattern of genetic diversity for the two species that is consistent with the Quaternary glacial history of southern Chile, and suggests a complex phylogeographic history in the Liolaemus and Batrachyla species. High‐divergence levels among haplotypes in some island populations of the archipelago also suggest genetic connectivity between putative refuges from Chiloé Island and the mainland along the exposed continental shelf during sea level minima associated with the most recent Quaternary glaciations. Our results are consistent with our hypothesis that two species have responded to parallel historical events in which the historical process during the last glacial maximum (approximately 41°S) has been sufficient to influence their phylogeographic structure.  相似文献   

9.
The Sunda region of south-east Asia comprises the Malay Peninsula and the islands of Java, Sumatra and Borneo, all of which lie on a shallow continental shelf projecting from Indochina. Pleistocene glacial cycles caused sea levels to drop repeatedly, exposing vast areas of the Sunda shelf and creating land bridges among the islands and mainland. These land bridges, the latest of which connected all three of the major Sunda islands to the Malay Peninsula as recently as 9500 years ago, may have enabled mammalian migrations across the Sunda shelf. Pleistocene land bridges on the Sunda shelf have been invoked to explain the current distributions of mammalian taxa occupying ranges corresponding with the Pleistocene limits of land and the appearance of new mammal species in the Pleistocene fossil record. The ability of mammals to move throughout the exposed shelf during periods of low sea level would, however, have been influenced by topographic and ecological features, which have been variously described as savanna-like or as moist tropical rain forest. Using a phylogeographical approach, we test the hypothesis that Pleistocene land bridges enabled widespread movements in three rain-forest-restricted murine rodents of the Sunda shelf: Maxomys surifer , Leopoldamys sabanus and Maxomys whiteheadi . Our results do not support the hypothesis of broad Pleistocene migrations in these taxa, but instead suggest a deep history of vicariant evolution that may correspond with the Pliocene fragmentation of the Sunda block.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 91–109.  相似文献   

10.
We used partial sequences of mitochondrial 16S and cytochrome oxidase I genes to perform a phylogenetic study of collared frogs (Anura: Aromobatidae: Mannophryne ), a genus endemic to Venezuela and the islands of Trinidad and Tobago. We analysed 1.2 kb from 13 of the 15 described species of Mannophryne . Maximum parsimony, maximum likelihood and Bayesian analyses support the monophyly of Mannophryne . Mannophryne consists of three deeply differentiated clades that split from each other in a relatively short period of time. The diversification of Mannophryne occurred well before the glacial-interglacial periods of the Quaternary. Our data support the taxonomic validity of M. olmonae , a species endemic to Tobago Island. Mannophryne olmonae is more closely related to the continental species Mannophryne riveroi than to the Trinidad island endemic Mannophryne trinitatis . As in most tropical clades of frogs, molecular evidence indicates that species richness in Mannophryne is largely underestimated and, consequently, current priorities for conservation are inadequate.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 185–199.  相似文献   

11.
The plethodontid genus Batrachoseps , the slender salamanders, is the most diverse clade of salamanders in western North America, but it has posed taxonomic difficulties because it contains many morphologically cryptic species. A segment of the mitochondrial DNA gene cytochrome b was studied for 278 individuals densely sampled from throughout the range of all 18 described species and several undescribed species. Phylogenetic analyses of the mtDNA data identify six major clades, one corresponding to the subgenus Plethopsis and five within a monophyletic subgenus Batrachoseps. All major clades and most species within these clades display strong phylogeographic structuring. Comparisons of mtDNA and allozyme data show that several allozymically cohesive groups are not monophyletic with respect to mtDNA. We suggest that this phenomenon results from fragmentation of populations, divergence in allopatry, and then recontact and gradual merging of units caused predominantly by male-mediated gene flow. The mtDNA offers evidence that populations were once more isolated than they are now, while the patterns of allozyme variation reflect recent and current interactions among populations. The complex patterns of morphological, allozymic and mtDNA variation associated with the constantly changing geological landscape give insight into the nature of processes responsible for species formation in Batrachoseps .  © 2002 The Linnean Society of London. Biological Journal of the Linnean Society , 2002, 76 , 361–391.  相似文献   

12.
To investigate the role of vicariance and dispersal on New Zealand's estuarine biodiversity, we examined variability in mitochondrial cytochrome c oxidase subunit I (COI) gene sequences for the amphipod genus Paracorophium. Individuals from the two nominate endemic species (Paracorophium excavatum and Paracorophium lucasi) were collected from sites throughout the North and South Islands. Sequence divergences of 12.8% were detected among the species. However, divergences of up to 11.7% were also observed between well supported clades, suggesting the possibility of cryptic species. Nested clade analyses identified four distinct lineages from within both P. excavatum and P. lucasi, with boundaries between clades corresponding to topographical features (e.g. Cook Straight, North and East Cape). Sequence divergences of 3.7–4.9% were also observed within geographic regions (e.g. east and west coasts of the upper North Island). Genetic structure in Paracorophium appears to represent prolonged isolation and allopatric evolutionary processes dating back to the Upper Miocene and continuing through the Pliocene and early Pleistocene. On the basis of molecular clock estimates from sequence divergences and reconstructions of New Zealand's geological past, we suggest that sea level and landmass changes during the early Pleistocene (2 Mya) resulted in the isolation of previously contiguous populations leading to the present‐day patterns. COI genetic structure was largely congruent with previously observed allozyme patterns and highlights the utility of COI as an appropriate marker for phylogeographic studies of the New Zealand estuarine fauna. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 863–874.  相似文献   

13.
The genetic structure and morphometric differentiation of mangrove crab Perisesarma guttatum populations were examined among shelf connected locations along a latitudinal gradient on the East African coast. Over 2200 specimens were sampled from 23 mangrove sites for geometric morphometrics analysis. Population genetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) DNA sequences were used to evaluate connectivity among populations. A total of 73 haplotypes were detected, and almost no haplotypes were found in common between two highly supported phylogeographic clades: southern Mozambique (Inhaca Island and Maputo Bay) and a northern clade that included north Mozambique, Tanzania and Kenya. These two clades were identified based on the species' populations pairwise genetic differentiation and geographical location. ΦST values were considerably high between the two clades, indicating the presence of significant population genetic structure between Kenya and South Mozambique. However, each clade was composed of genetically similar populations along the latitudinal gradient, and no significant population structure was found within each clade because the Φst values were not significant. The morphometric analysis corroborated the division into two clades (i.e. Inhaca Island/Maputo Bay and northern populations) and also detected less shape variation among populations that were few kilometres apart. The significant spatial genetic structuring between the southern and the northern populations of P. guttatum along the geographic gradient under study, combined with morphological differences, suggests that these populations may be considered as cryptic species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 28–46.  相似文献   

14.
Vicariant geographic isolation and resource partitioning have long been independently identified as processes contributing to the morphological divergence of closely-related species. However, little is known about the extent to which vicariant history influences the adaptive ecological divergence associated with resource partitioning and trophic specialization within species. The present study thus quantified the contribution of vicariant historical genetic divergence to the adaptive contemporary morphological divergence of intraspecific feeding specialists in the Rainbow smelt (Pisces: Osmerus mordax ). This species is characterized by the polyphyletic origin of two lacustrine feeding specialists originating in two intraspecific lineages associated with independent glacial refuges. The historical genetic segregation was initiated approximately 350 000 years ago, whereas the lacustrine trophic segregation arose within the past 10 000 years. Wild caught lacustrine smelt populations were grouped a priori based on known historical genetic identities (Acadian and Atlantic mitochondrial DNA clades) and contemporary feeding specializations (microphageous and macrophageous morphotypes). The present study demonstrated that independent suites of correlated morphological traits are associated with either vicariant history or contemporary feeding specializations. Second, functionally-similar feeding specialists exhibit distinct morphologies resulting largely from vicariant historical processes. Although, the evolutionary processes producing historical phenotypes remains unknown, the results obtained demonstrate how adaptive radiation associated with ecological resource partitioning and feeding specializations can be strongly influenced by intraspecific phenotypic diversification resulting from relatively recent vicariant histories.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 140–151.  相似文献   

15.
Biogeographic patterns displayed by obligate freshwater organisms are intimately related to the nature and extent of connectivity between suitable habitats. Two of the more significant barriers to freshwater connections are seawater and major drainage divides. South‐eastern Australia provides a contrast between these barriers as it has discrete areas that are likely influenced to a greater or lesser extent by each barrier type. We use continental shelf width as a proxy for the potential degree of river coalescence during low sea levels. Our specific hypothesis is that the degree of phylogeographic divergence between coastal river basins should correspond to the continental shelf width of each region. This predicts that genetic divergences between river basins should be lowest in regions with a wider continental shelf and that regions with similar continental shelf width should have similar genetic divergences. Pygmy perches (Nannoperca australis and Nannoperca ‘flindersi’) in south‐eastern Australia provide an ideal opportunity to test these biogeographic hypotheses. Phylogeographic patterns were examined based on range‐wide sampling of 82 populations for cytochrome b and 23 polymorphic allozyme loci. Our results recovered only limited support for our continental shelf width hypothesis, although patterns within Bass clade were largely congruent with reconstructed low sea‐level drainage patterns. In addition, we identified several instances of drainage divide crossings, typically associated with low elevational differences. Our results demonstrate high levels of genetic heterogeneity with important conservation implications, especially for declining populations in the Murray–Darling Basin and a highly restricted disjunct population in Ansons River, Tasmania.  相似文献   

16.
We analysed mitochondrial (cytochrome  b ) nucleotide sequences, nuclear allozyme markers, and morphometric characters to investigate species boundaries and phylogenetic relationships among dusky salamanders ( Desmognathus ) in the southern Blue Ridge and adjacent Piedmont Physiographic Provinces of Virginia and North Carolina. Our results revealed four distinct mitochondrial DNA clades that are also characterized by distinct allozyme markers. One clade consists of sequences derived from populations distributed from New England to south-western Virginia that are referable to Desmognathus fuscus Rafinesque, 1820, although there is considerable sequence and allozyme divergence within this clade. A second clade consists of sequences derived from populations referable to Desmognathus planiceps Newman, 1955, a form that we resurrect from its long synonymy under D. fuscus . Desmognathus planiceps and D. fuscus also differ in mandibular tooth shape. Two other cytochrome  b sequences recovered from populations along the Blue Ridge escarpment in southern Virginia are quite divergent from those of the previous two clades, and these populations may represent yet another distinct species. Sequences from a population in the Brushy Mountains in the Piedmont of northern North Carolina are similar to those of Desmognathus carolinensis . Population groupings indicated by allozyme data generally correspond to the cytochrome  b clades. Cryptic diversity in Appalachian desmognathan salamanders clearly requires further study. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 115–130.  相似文献   

17.
The eresid spider genus Eresus is morphologically and ecologically conservative. At least three species occur in Europe. However, deep genetic divergence among geographical samples within two species, E. cinnaberinus and E. sandaliatus , may suggest more cryptic species. In the present study we investigate the genetic cohesion of the third species, Eresus walckenaeri , throughout its eastern Mediterranean distribution range, relative to the E. cinnaberinus–E. sandaliatus species complex. Eresus walckenaeri specimens were monophyletic. Genetic discreteness of E. walckenaeri in a region of sympatry with its sister species in Greece provides evidence for species integrity of E. walckenaeri within the European Eresus species complex. Eresus walckenaeri exhibited high concordance between geographical location and mtDNA genealogy. Two major phylogeographical clades were found in the Greek–Turkish and Syrian–Israel parts of the investigated area, respectively (∼6.5% sequence divergence). Concordance between geography and genetic divergence was further observed between Aegean island samples and their corresponding Greek and Turkish mainland samples, suggesting regional subdivision with gradual but potentially high dispersal propensity. Monophyly and limited regional distribution indicate Mediterranean endemic origin.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 1–9.  相似文献   

18.
According to previous phylogeographic studies, high mountains at low latitudes are important areas for the study of the evolutionary history of arctic–alpine plants in surviving the Pleistocene climatic oscillations. To evaluate this hypothesis, we elucidated the genetic structure of the arctic–alpine plant, Loiseleuria procumbens , in the Japanese archipelago, which corresponds to one of the southernmost limits of its distribution, using 152 individuals from 17 populations that covered the entire distribution of the Japanese archipelago and Sakhalin, in addition to samples from Sweden. Based on 854 bp of chloroplast DNA, we detected eight haplotypes. Along with haplotype distribution, strong genetic differentiation between populations in central and northern Japan was elucidated by a neighbour-joining tree (100%) and spatial analysis of molecular variance (79%), which is consistent with other alpine plants in Japan, regardless of the species' range. In addition, the southernmost populations from northern Japan showed specific genetic structure, although the remaining areas of northern Japan and Sakhalin harboured an homogenous genetic structure. Our results suggest that the populations in central Japan persisted for a long time during the Pleistocene climatic oscillation and that genetic divergence occurred in situ , supporting our hypothesis in conjunction with a previous study of another arctic–alpine plant, Diapensia lapponica subsp. obovata .  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 403–412.  相似文献   

19.
Few operational methods exist for delimiting species boundaries, and these usually require sampling strategies that are unrealistic for widespread organisms that occur at low densities. Here we apply molecular, morphological and ecological species delimitation criteria to a wide-ranging, fragmented group of Asian green pitvipers, the Popeia popeiorum complex. A mitochondrial DNA phylogeny for the group indicates two well-differentiated clades, corresponding mainly to northern and southern parts of its range. Strong phylogeographical structure within each clade suggests isolation in forest refugia during the Pliocene and a southward colonization of the Sunda islands during the Pleistocene. Multivariate analysis of morphological characters reveals a generally conserved pattern of geographical variation, incongruent with the recovered phylogenetic history. We compare groups delineated by mtDNA variation to morphological and ecological divisions in the complex, and discuss the implications of these for the taxonomy of the group. Discordance between species boundaries inferred from different criteria suggests that combining independent sources of data provides the most reliable estimation of species boundaries in organisms that are difficult to sample in large numbers.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 343–364.  相似文献   

20.
Three endemic Cretan land snail species of the genus Mastus (Beck, 1837) from the island group of Koufonisi (south-east Crete) and the eastern part of Crete, were studied by multivariate analysis of shell morphology and analysis of mtDNA sequences. The phylogeny of the populations studied and the processes effecting the genetic and morphological diversity of the species were investigated. Extremely high mtDNA sequence divergence was observed both within and between populations. The Cretan populations could not be distinguished morphologically, while the populations of the islets were more distinct. We argue that the active geological past of the area (including sea level changes) and the long-term presence of humans has produced a mixing up of Mastus populations leading to the accumulation of high divergence of mtDNA sequences on a small spatial scale. The limited morphological diversity and the distinct shell 'identity' of the islets' populations can be attributed to the selective pressures of the island group.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78, 383–399.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号