首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the effect of salinity on the catalyzing ability of β-glucosidase in the marine fungus Aspergillus niger, the thermodynamic parameters of the β-glucosidase were investigated at different salinities. At the optimum salinity of 6% NaCl (w/v) solution, the optimum temperature and pH of the β-glucosidase activity was 66 °C and 5.0, respectively. Under these conditions, the β-glucosidase activity increased 1.46 fold. The half-life of denaturation in 6% NaCl (w/v) solution was approximately twice as long as that in NaCl free solution. The Gibb's free energy for denaturation, ΔG, was 2 kJ/mol higher in 6% NaCl (w/v) solution than in NaCl free solution. The melting point (68.51 °C) in 6% NaCl (w/v) solution was 1.71 °C higher than that (66.80 °C) in NaCl free solution. Similarly, the activity and thermostability of the pure β-glucosidase increased remarkably at high salinity. The thermostable β-glucosidase, of which the activity and the thermostability are remarkably enhanced at high salinity, is valuable for industrial hydrolyzation of cellulose in high salinity environments.  相似文献   

2.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

3.
The yeast Wickerhamomyces anomalus (the previous name was Pichia anomala) HN1-2 isolated from the mangrove ecosystem was found to be able to produce high level of both killer toxin and single cell protein. When the killer yeast cells were grown by batch cultivation in 5-l fermentor, crude protein in the cells, cell mass, reducing sugar, and diameter of the inhibition zone reached 56.0 g per 100 g of cell dry weight, 7.3 g per liter, 9.5 g per liter, and 19.0 mm, respectively within 12 h and this yeast synthesized a large amount of the essential amino acids, such as lysine (7.8%), methionine (1.8%), and leucine (9.0%). The crude killer toxin produced by the killer yeast isolate HN1-2 could kill the cells of Lodderomyces elongisporus, Candida albicans, Metschnikowia bicuspidata, Pichia guilliermondii, Saccharomyces cerevisiae, Yarrowia lipolytica, and Kluyveromyces aestuarii, which were widely distributed in natural marine environments. The results also showed that the undesirable yeast could be avoided during cell growth of the killer yeast.  相似文献   

4.
Fatty alcohols are important components of a vast array of surfactants, lubricants, detergents, pharmaceuticals and cosmetics. We have engineered Saccharomyces cerevisiae to produce 1-hexadecanol by expressing a fatty acyl-CoA reductase (FAR) from barn owl (Tyto alba). In order to improve fatty alcohol production, we have manipulated both the structural genes and the regulatory genes in yeast lipid metabolism. The acetyl-CoA carboxylase gene (ACC1) was over-expressed, which improved 1-hexadecanol production by 56% (from 45 mg/L to 71 mg/L). Knocking out the negative regulator of the INO1 gene in phospholipid metabolism, RPD3, further enhanced 1-hexadecanol production by 98% (from 71 mg/L to 140 mg/L). The cytosolic acetyl-CoA supply was next engineered by expressing a heterologous ATP-dependent citrate lyase, which increased the production of 1-hexadecanol by an additional 136% (from 140 mg/L to 330 mg/L). Through fed-batch fermentation using resting cells, over 1.1 g/L 1-hexadecanol can be produced in glucose minimal medium, which represents the highest titer reported in yeast to date.  相似文献   

5.
The osmotin proteins of several plants display antifungal activity, which can play an important role in plant defense against diseases. Thus, this protein can be useful as a source for biotechnological strategies aiming to combat fungal diseases. In this work, we analyzed the antifungal activity of a cacao osmotin-like protein (TcOsm1) and of two osmotin-derived synthetic peptides with antimicrobial features, differing by five amino acids residues at the N-terminus. Antimicrobial tests showed that TcOsm1 expressed in Escherichia coli inhibits the growth of Moniliophthora perniciosa mycelium and Pichia pastoris X-33 in vitro. The TcOsm1-derived peptides, named Osm-pepA (H-RRLDRGGVWNLNVNPGTTGARVWARTK-NH2), located at R23-K49, and Osm-pepB (H-GGVWNLNVNPGTTGARVWARTK-NH2), located at G28-K49, inhibited growth of yeasts (Saccharomyces cerevisiae S288C and Pichia pastoris X-33) and spore germination of the phytopathogenic fungi Fusarium f. sp. glycines and Colletotrichum gossypi. Osm-pepA was more efficient than Osm-pepB for S. cerevisiae (MIC = 40 μM and MIC = 127 μM, respectively), as well as for P. pastoris (MIC = 20 μM and MIC = 127 μM, respectively). Furthermore, the peptides presented a biphasic performance, promoting S. cerevisiae growth in doses around 5 μM and inhibiting it at higher doses. The structural model for these peptides showed that the five amino acids residues, RRLDR at Osm-pepA N-terminus, significantly affect the tertiary structure, indicating that this structure is important for the peptide antimicrobial potency. This is the first report of development of antimicrobial peptides from T. cacao. Taken together, the results indicate that the cacao osmotin and its derived peptides, herein studied, are good candidates for developing biotechnological tools aiming to control phytopathogenic fungi.  相似文献   

6.
The biocontrol activity of Rhodotorula glutinis on gray mold decay and blue mold decay of apple caused by Botrytis cinerea and Penicillium expansum, respectively, was investigated, as well as its effects on postharvest quality of apple fruits. The results show there was a significant negative correlation between concentrations of the yeast cells and the disease incidence of the pathogens. The higher concentration of the R. glutinis, the better effect of the biocontrol capacity. At concentrations of R. glutinis 1 × 108 CFU ml?1, the amount of gray mold decay was completely inhibited after 5 days incubation at 20 °C, after challenge with B. cinerea spores suspension of 1 × 105 spores ml?1; While the blue mold decay was completely inhibited at concentrations of 5 × 108 CFU ml?1, at challenged with P. expansum spores suspension of 5 × 104 spores ml?1. These results demonstrated that the efficacy of R. glutinis in controlling of gray mold decay of apples was better than the efficacy of controlling blue mold. R. glutinis within inoculated wounds on apples increased in numbers at 20 °C from an initial level of 9.5 × 105 CFU per wound to 2.24 × 107 CFU at 20 °C after 1 day. The highest population of the yeast was recovered 4 days after inoculation, the yeast population in wounds increased by 56.9 times. After that, the population of the yeast began to decline very slowly. R. glutinis significantly reduced the incidence of natural infections on intact fruit from 75% in the control fruit to 28.3% after 5 days at 20 °C, and from 58.3 to 6.7% after 30 days at 4 °C followed by 4 days at 20 °C. R. glutinis treatment had no deleterious effect on quality parameters after 5 days at 20 °C or after 30 days at 4 °C followed by 4 days at 20 °C.  相似文献   

7.
《Process Biochemistry》2010,45(10):1730-1737
An aerobic xylanolytic Gracilibacillus sp. TSCPVG growing at moderate to extreme salinity (1–30%) and neutral to alkaline pH (6.5–10.5) was isolated from the salt fields near Sambhar district of Rajasthan, India. β-xylanase (18.44 U/ml) and β-xylosidase (1.01 U/ml) were produced in 60 h in the GSL-2 mineral base medium with additions of (in g/l) Birchwood xylan (7.5), yeast extract (10.0), tryptone (8.0), proline (2.0), thiamine (2.0), Tween-40 (2.0) and NaCl (35) at pH 7.5, 30 °C and 180 rpm. The β-xylanase was active within a broad salinity range (0–30% NaCl), pH (5.0–10.5) and temperature (50–70 °C). It exhibited maximal activity with 3.5% NaCl, pH 7.5 at 60 °C. It was extremely halotolerant retaining more than 80% of activity at 0 and 30% NaCl and alkali-tolerant retaining 76% of activity at pH 10.5. The acetone precipitated xylanase was highly stable (100%) at variable salinities of 0–30% NaCl, pH of 5.0–10.5 and temperatures of 0–60 °C for 48 h. HPLC analysis showed xylose, arabinose and xylooligosaccharides as hydrolysis products of xylan. This is the first report on hemi-cellulose degrading halo-alkali-thermotolerant enzyme from a moderately halophilic Gram-positive Gracilibacillus species.  相似文献   

8.
There has been a broad spectrum of theoretical and experimental works on microorganism disruption methods undertaken in the past. However, there is a lack of understanding regarding the actual reasons for microorganism disruption using ultrasound and whether it is caused by shock or shear. In the case of shear stress, which is the focus of this paper, analysis of the intense turbulent flow region of an in-house built shear apparatus combined with the experimental results demonstrated that when the energy dissipation rate in the turbulence region is high, and the size of the eddy is smaller than the size of the cell, the likelihood of yeast disruption is high. The mechanical properties of yeast cells combined with the calculated energy dissipation rate were used to evaluate the yeast disruption efficiency (log reduction). The results show that the shear apparatus can efficiently and effectively disrupt S. cerevisiae at different treatment times, suspension temperatures and rotor speeds. The experimental work suggests that maximum yeast log reduction was achieved when the maximum power dissipation of 2.095 kW was recorded at 10,000 RPM, while suspension temperature was controlled below 35 °C. The corresponding shear stress at 10,000 RPM was 2586.2 Pa.  相似文献   

9.
This study was carried out to evaluate the anti-obesity effect of Vernonia amygdalina Del. (VA) supplemented diet. VA leaf powder was fed at 5% and 15% to diet-induced obese rats for 4 weeks and its effect compared with orlistat (5.14 mg/kg p.o.), an anti-obesity drug. Food intake, body and organ weights, total body fat, some lipid components and amino transaminase activities in serum, hepatocytes and brain; as well as serum glucose, were measured during or at end of the study. Result showed respective decrease of 12.78% and 38.51% in body weight gain, of VA fed rats against 17.45% of orlistat at end of study (P < 0.05); but with no effect on food intake. Total body fat was lowered by 28.04% and 30.02% vs. obese control rats (CDC) (P < 0.05). Furthermore, serum triacylglycerol (TG), serum and brain total cholesterol (TCHOL), were down regulated at 15% VA supplementation (P < 0.05). Serum glucose which increased in obese rats by 46.26% (P < 0.05) vs. NC, indicating intolerance, was restored by VA (38.75% and 34.65%) and orlistat (31.80%) vs. CDC (P < 0.05). VA diet also exerted hepato-protection, via lowering serum alanine amino transaminase (ALT) (41.35% and 27.13%) and aspartate amino transaminase (AST) (17.09% and 43.21%) activities (P < 0.05). Orlistat had no effect on these enzymes. Histology of adipose tissue corroborated the changes on total body fat. We concluded that, diet supplemented with VA can attenuate dietary obesity as well as ameliorates the potential risks of hepato-toxicity and glucose intolerance associated with obesity.  相似文献   

10.
Seedlings of Pistacia vera L. and Pistacia atlantica Desf. were cultured on hormone-free DKW medium supplemented with NaCl. The plants were subjected to low NaCl concentrations ranging from 0 to 80 mM for 45 days or to high salt concentrations (0, 131, and 158.5 mM for P. vera and 0, 131, and 240 mM for P. atlantica) for 25 days. Toxicity symptoms were recorded for seedlings exposed to low NaCl treatments. Plant growth, survival rates, mineral content, as well as proline and soluble sugar contents were determined and evaluated at the end of the culture period. The results indicated that low NaCl treatments yielded no instances of plant death in both species. At high salt conditions, however, significant mortality rates were noted for both species, being 22.86% at 240 mM NaCl for P. atlantica and 25.8% at 158.5 mM NaCl for P. vera. With regards to salinity effects, levels of 60 and 80 mM NaCl induced significant decreases of stem elongation and leaf number in the P. vera species. Salinities between 40 and 80 mM NaCl, however, induced a decrease in the root number of both species. The fresh weights of P. vera and P. atlantica also decreased significantly after 45 days of culture at NaCl concentrations between 40 and 80 mM and after 25 days of culture at 158.5 and 240 mM NaCl, respectively. The sodium and chloride uptake in plant organs seemed to be controlled more efficiently in P. atlantica than in P. vera. In both species, the K+ content was noted to undergo a significant decrease when salinity increased. While the K+/Na+ ratio was maintained above 2 at low NaCl treatments, it was sharply decreased at high NaCl conditions, suggesting a failure of K–Na selectivity mechanism. The Ca2+/Na+ ratio decreased significantly at 60 and 80 mM NaCl in P. vera and at 60 mM NaCl for P. atlantica. In both Pistacia species, high NaCl treatments (131–240 mM NaCl) induced a significant increase in proline content.  相似文献   

11.
The objective of the present study was to isolate halotolerant bacteria from the sediment sample collected from Marakanam Solar Salterns, Tamil Nadu, India using NaCl supplemented media and screened for amylase production. Among the 22 isolates recovered, two strains that had immense potential were selected for amylase production and designated as P1 and P2. The phylogenetic analysis revealed that P1 and P2 have highest homology with Pontibacillus chungwhensis (99%) and Bacillus barbaricus (100%). Their amylase activity was optimized to obtain high yield under various temperature, pH and NaCl concentration. P1 and P2 strain showed respective, amylase activity maximum at 35 °C and 40 °C; pH 7.0 and 8.0; 1.5 M and 1.0 M NaCl concentration. Further under optimized conditions, the amylase activity of P1 strain (49.6 U mL?1) was higher than P2 strain. Therefore, the amylase enzyme isolated from P. chungwhensis P1 was immobilized in sodium alginate beads. Compared to the free enzyme form (49.6 U mL?1), the immobilized enzyme showed higher amylase activity as 90.3 U mL?1. The enzyme was further purified partially and the molecular mass was determined as 40 kDa by SDS–PAGE. Thus, high activity of amylase even under increased NaCl concentration would render immense benefits in food processing industries.  相似文献   

12.
Nitrogen limitation, particularly prevailing in the case of high gravity beer brewing, results in poor yeast viability and even stuck or sluggish fermentations. Although wort contains abundant proteins and longer chain peptides, brewer's yeast does not assimilate them due to the fact that cells hardly secrete proteases during fermentation. The objective of this study was to investigate the possibility for utilizing unavailable nitrogen from two types of high gravity worts (20 °P and 24 °P) by adding three food-grade commercial proteases (Neutrase, Flavorzyme and Protamex) at the beginning of fermentations, respectively. Results showed that proteases supplementation significantly increased the FAN level and thus the amount of cell suspension in the later stages of fermentations (ca. 10 days later for 20 °P and 25 days later for 24 °P) (p < 0.05). Among the studied three proteases, we found that fermentations with Flavorzyme supplementation exhibited the best fermentation performance in terms of significantly improved wort fermentability, higher ethanol yield and flavor volatiles formation (p < 0.05). Furthermore, the foam of final beers produced by adding proteases was as stable as that of the control at each of the corresponding gravities.  相似文献   

13.
The psychrotolerant yeast Mrakia frigida 2E00797 isolated from sea sediments in Antarctica was found to be able to produce killer toxin against Metschnikowia bicuspidata, Candida tropicalis and Candida albicans. In the present study, the killer toxin was purified and characterized. The molecular weight of the purified killer toxin was estimated to be 55.6 kDa and the purified killer toxin shared 35.1% sequence homology with a protein kinase. The purified killer toxin's optimal temperature and pH for killing activity were 16 °C and 4.5, respectively, and it was stable in the temperature range from 10 to 25 °C at pH 4.5. The toxin's highest killing activity was observed in the presence of 3.0 g/100 ml NaCl. The purified killer toxin was able to actively kill whole cells of M. bicuspidata but could not kill the protoplast of the sensitive yeast. Of the eight yeast species tested in this study, the killer toxin was able to kill C. tropicalis and C. albicans in addition to M. bicuspidata.  相似文献   

14.
《Process Biochemistry》2007,42(5):805-811
The marine yeast strain G7a isolated from sediment of China South Sea was found to secrete a large amount of inulinase into the medium. This marine yeast strain was identified to be a strain of Cryptococcus aureus according to the results of routine yeast identification and molecular methods. The crude inulinase produced by this marine yeast showed the highest activity at pH 5.0 and 50 °C. The optimal medium for inulinase production was artificial seawater containing inulin 4.0% (w/v), K2HPO4 0.3% (w/v), yeast extract 0.5% (w/v), KCl 0.5% (w/v), CaCl2 0.12% (w/v), NaCl 4.0% (w/v) and MgCl2·6H2O 0.6% (w/v), while the optimal cultivation conditions for inulinase production were pH 5.0, a temperature of 28 °C and a shaking speed of 170 rpm. Under the optimal conditions, over 85.0 U/ml of inulinase activity was produced within 42 h of fermentation at shake flask level. This is very high level of inulinase activity produced by yeasts. A large amount of monosaccharides and oligosaccharides were detected after inulin hydrolysis by the crude inulinase.  相似文献   

15.
Recently, Mucor indicus was introduced as a promising ethanol producing microorganism for fermentation of lignocellulosic hydrolysates, showing a number of advantages over Saccharomyces cerevisiae. However, high nutrient requirement is the main drawback of the fungus in efficient ethanol production from lignocelluloses. In this study, application of fungal extract as a potential nutrient source replacing all required nutrients in fermentation of wheat straw by M. indicus was investigated. Wheat straw was pretreated with N-methylmorpholine-N-oxide (NMMO) at 120 °C for 1–5 h prior to enzymatic hydrolysis. Hydrolysis yield was improved at least by 6-fold for 3 h pretreated straw compared with that of untreated one. A fungal extract was produced by autolysis of M. indicus biomass, an unavoidable byproduct of fermentation. Maximum free amino nitrogen (2.04 g/L), phosphorus (1.50 g/L), and total nitrogen (4.47 g/L) as well as potassium, magnesium, and calcium in the fungal extract were obtained by autolysis of the biomass at 50 °C and pH 5.0. The fungal extract as a nutrient-rich supplement substituted yeast extract and all other required minerals in fermentation and enhanced the ethanol yield up to 92.1% of the theoretical yield. Besides, appreciate amounts of chitosan were produced as another valuable product of the autolysis.  相似文献   

16.
Among 120 isolates examined in this study, three isolates were selected for amylase production on starch agar plates following incubation at 10 °C. Identification by 16SrRNA on selected bacterium disclosed the highest similarity for protean regions of this gene as Aeromonas veronii NS07. A 63 kDa psychrophilic amylase enzyme from NS07 strain was purified by two-steps chromatography. The enzyme had the highest specific activity at pH 4 and was active at the range of temperatures from 0 to 50 °C, although the optimum temperature for enzyme activity was found at 10 °C. Analysis of the N-terminal amino acid sequencing disclosed 20 amino acids from purified amylase which had no similarity with other known α-amylases, indicating that the presented enzyme was novel. Amylase activity was enhanced in relation to optimum activity with the presence of sodium sulphate (161%), MnCl2 (298%), CaCl2 (175%), FeCl2 (182%), MgCl2 (237%), ZnCl2 (169%), NiCl2 (139%), NaCl (158%), each at 5 mM, while EDTA, phenylmethane sulphonylfluoride (PMSF) (3 mM), urea (8 M) and SDS (1%) inhibited the enzyme up to 5%, 2%, 80% and 18%, respectively. NS07 strain seems to be suitable as biocatalyst for practical use in liquefaction of starch at low temperatures, detergent and textile industries.  相似文献   

17.
This study aimed to construct new yeast hybrid strains for introducing flavor and aroma diversity to ciders. The inactivated protoplasts of Saccharomyces cerevisiae and Candida krusei were electric-induced fused under the optimized electric condition of pulse field density 2200 V/cm, pulse time 20 μs, pulse number 2 times and pulse interval 1 s, and 69 fusants were initially obtained. By performing Durham's fermentation for ten generations, 9 stable hybrid strains were screened. The chemical analysis showed that the alcoholic degree of ciders fermented by R2, R4, R5, R6 and R8 achieved about 12% (v/v), which was statistically the same level as the one fermented by parental strain WF1. The GC–MS results showed different strain generated totally different aroma profiles. R4 produced significant higher concentration of 2-methyl-butanoic acid ethyl ester, 2-methyl-1-propanol, 3-methyl-butanol acetate, 1-butanol, acetic acid hexyl ester, 1-hexanol and 1-octanol. The 9 hybrid yeast strains and parental strains were further compared through fuzzy comprehensive evaluation combining sensory score and aroma components content. The results showed that the hybrid R4 scored highest and displayed desirable properties of both parents.  相似文献   

18.
This study investigated effects of feeding three individual, and a mixed, yeast culture (Kluyveromyces marximanus NRRL3234, Saccharomyces cerevisiae NCDC42, Saccharomyces uvarum ATCC9080 all in a 1:1:1, ratio) on growth performance, nutrient utilization and microbial crude protein (CP) synthesis in feedlot lambs during the post-weaning phase of growth. Sixty weaner lambs (90 ± 3.5 d old and 15.9 ± 0.50 kg BW) were fed for 91 d in five equal groups. The control group of lambs received sterilized culture medium while the treatment groups were fed a yeast culture in addition to a ad libitum total mixed ration (TMR). The yeast culture, dosed at 1 ml/kg body weight (BW) had 1.5–2.0 × 109 live cells/ml. Yeast culture supplementation did not influence intake and digestibility of organic matter (OM), CP, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose and the metabolizable energy (ME) level of the diets were similar between control and yeast supplemented lambs. Lambs in all groups were in positive N balance, but N intake and N voided in feces and urine, as well as N balance, did not change due to yeast culture supplementation. Urinary allantoin excretion was similar, but purine derivatives absorbed (mM/d) were higher (P<0.05) in yeast culture supplemented lambs. Yeast culture supplementation improved (P<0.05) microbial CP synthesis. Supplementation of SC and mixed yeast improved (P=0.002) BW gain of lambs by 21% and 16% respectively. All yeast culture supplemented lambs had higher feed efficiency in comparison to control lambs. Among the three yeast cultures used, S. cerevisiae had the most potential as a growth promoting feed additive in feedlot lamb production, and it may serve as an alternate to antibiotics and ionophores as a growth promoter of weaner lambs.  相似文献   

19.
20.
A study quantifying the effect of NaCl on growth and Cd accumulation of Spartina alterniflora subjected to Cd stress was conducted. Seedlings were cultivated in the presence of 1 or 3 mM Cd alone, or combined with NaCl (50 or 100 mM). The results showed that NaCl magnified the phytotoxicity of moderate Cd stress (1 mM Cd) on plants due to reduced levels of plant biomass, plant height, and chlorophyll a + b, while no synergistic effects were recorded under severe Cd stress (3 mM Cd). Proline and Ca2 + accumulated along with additional NaCl under moderate Cd stress, instead of reduced or unchanged levels under severe Cd stress owing to different adoption strategies caused by NaCl under different Cd stresses. NaCl reduced the oxidative stress in Cd-treated plants through increasing levels of antioxidative enzymes (catalase (CAT) and peroxidase (POD)) under moderate Cd stress. With NaCl addition, Cd2 + contents in S. alterniflora increased and reduced under moderate and severe Cd stress, respectively. However, total Cd2 + amounts increased with increasing NaCl concentration due to biological dilution. NaCl improved the increase of Cd2 + translocation factor (TF) under moderate Cd stress, indicating that NaCl might improve Cd2 + uptake and translocation from roots to shoots, and enhance the phytoextraction of S. alterniflora on Cd; while phytostabilization of Cd under severe Cd stress may be possible due to the reduced TF. Thus, NaCl alleviated phytotoxicity caused by Cd stress through improved management of osmotic solutes and oxidative status, and affected Cd accumulations in S. alterniflora differently under moderate and severe Cd stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号