首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1–3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size.  相似文献   

2.
Comparative genomics of representative basal metazoans leaves little doubt that the most recent common ancestor to all modern metazoans was morphogenetically complex. Here, we support this interpretation by demonstrating that the demosponge Amphimedon queenslandica has a biphasic pelagobenthic life cycle resembling that present in a wide range of bilaterians and anthozoan cnidarians. The A. queenslandica life cycle includes a compulsory planktonic larval phase that can end only once the larva develops competence to respond to benthic signals that induce settlement and metamorphosis. The temporal onset of competence varies between individuals as revealed by idiosyncratic responses to inductive cues. Thus, the biphasic life cycle with a dispersing larval phase of variable length appears to be a metazoan synapomorphy and may be viewed as an ancestral polyphenic trait. Larvae of a particular age that are subjected to an inductive cue either maintain the larval form or metamorphose into the post-larval/juvenile form. Variance in the development of competence dictates that only a subset of a larval cohort will settle and undergo metamorphosis at a given time, which in turn leads to variation in dispersal distance and in location of settlement. Population divergence and allopatric speciation are likely outcomes of this conserved developmental polyphenic trait.  相似文献   

3.
Life history theory and empirical studies suggest that large size or earlier metamorphosis are suitable proxies for increased lifetime fitness. Thus, across a gradient of larval habitat quality, individuals with similar phenotypes for these traits should exhibit similar post-metamorphic performance. Here we examine this paradigm by testing for differences in post-metamorphic growth and survival independent of metamorphic size in a temperate (spring peeper, Pseudacris crucifer) and tropical (red-eyed treefrog, Agalychnis callidryas) anuran reared under differing larval conditions. For spring peepers, increased food in the larval environment increased post-metamorphic growth efficiency more than predicted by metamorphic phenotype and led to increased mass. Similarly, red-eyed treefrogs reared at low larval density ended the experiment at a higher mass than predicted by metamorphic phenotype. These results show that larval environments can have delayed effects not captured by examining only metamorphic phenotype. These delayed effects for the larval environment link larval and juvenile life history stages and could be important in the population dynamics of organisms with complex life cycles.  相似文献   

4.
Organisms with complex life-cycles often experience very different environments in different phases of their life. Genes expressed in more than one phase could potentially create a conflict or constraint on evolutionary change if the pattern of selection on those genes were different in the different phases. The potential importance of this type of constraint across metamorphosis in frogs was assessed by measuring the genetic correlation between several morphological traits in both larval and juvenile Rana sylvatica. Genetic correlations within a stage tended to be moderately high and significant whereas correlations across stages were low and not significant. Errors on the genetic parameters make it impossible to prove that there are no genetic constraints across metamorphosis in this population of frogs, but the results are consistent with the hypothesis that gene expression and developmental regulation are partitioned separately before and after metamorphosis.  相似文献   

5.
Biliary atresia is a rare disease of infancy, with an estimated 1 in 15,000 frequency in the southeast United States, but more common in East Asian countries, with a reported frequency of 1 in 5,000 in Taiwan. Although much is known about the management of biliary atresia, its pathogenesis is still elusive. The sea lamprey (Petromyzon marinus) provides a unique opportunity to examine the mechanism and progression of biliary degeneration. Sea lamprey develop through three distinct life stages: larval, parasitic, and adult. During the transition from larvae to parasitic juvenile, sea lamprey undergo metamorphosis with dramatic reorganization and remodeling in external morphology and internal organs. In the liver, the entire biliary system is lost, including the gall bladder and the biliary tree. A newly-developed method called “CLARITY” was modified to clarify the entire liver and the junction with the intestine in metamorphic sea lamprey. The process of biliary degeneration was visualized and discerned during sea lamprey metamorphosis by using laser scanning confocal microscopy. This method provides a powerful tool to study biliary atresia in a unique animal model.  相似文献   

6.
Marine ectotherms are often sensitive to thermal stress, and certain life stages can be particularly vulnerable (e.g., larvae or spawners). In this study, we investigated the critical thermal maxima (CTmax) of larval and early juvenile life stages of three tropical marine fishes (Acanthochromis polyacanthus, Amphiprion melanopus, and Lates calcarifer). We tested for potential effects of developmental acclimation, life stage, and experimental heating rates, and we measured metabolic enzyme activities from aerobic (citrate synthase, CS) and anaerobic pathways (lactate dehydrogenase, LDH). A slightly elevated rearing temperature neither influenced CTmax nor CS activity, which otherwise could have indicated thermal acclimation. However, we found CTmax to either remain stable (Acanthrochromis polyacanthus) or increase with body mass during early ontogeny (Amphiprion melanopus and Lates calcarifer). In all three species, faster heating rates lead to higher CTmax. Acute temperature stress did not change CS or LDH activities, suggesting that overall aerobic and anaerobic metabolism remained stable. Lates calcarifer, a catadromous species that migrates from oceanic to riverine habitats upon metamorphosis, had higher CTmax than the two coral reef fish species. We highlight that, for obtaining conservative estimates of a fish species’ upper thermal limits, several developmental stages and body mass ranges should be examined. Moreover, upper thermal limits should be assessed using standardized heating rates. This will not only benefit comparative approaches but also aid in assessing geographic (re-) distributions and climate change sensitivity of marine fishes.  相似文献   

7.
The gastropod nervous system in metamorphosis   总被引:2,自引:0,他引:2  
Many gastropods, including the sea hare Aplysia californica, undergo metamorphosis in passing from the larval to the juvenile phases of their life cycle. During metamorphosis, the gastropod nervous system is affected by both progressive and regressive neuronal events. In addition to this metamorphic reorganization, the nervous system appears to be centrally involved in initiating metamorphosis. We propose that gastropods not only possess temporally distinct neuronal adaptations for the specific needs of the larval and juvenile phases, but also another transient neuronal adaptation specialized to subserve the metamorphic episode.  相似文献   

8.
In free-spawning marine invertebrates, larval development typically proceeds by one of two modes: planktotrophy (obligate larval feeding) from small eggs or lecithotrophy (obligate non-feeding) from relatively large eggs. In a rare third developmental mode, facultative planktotrophy, larvae can feed, but do not require particulate food to complete metamorphosis. Facultative planktotrophy is thought to be an intermediate condition that results from an evolutionary increase in energy content in the small eggs of a planktotrophic ancestor. We tested whether an experimental reduction in egg size is sufficient to restore obligate planktotrophy from facultative planktotrophy and whether the two sources of larval nutrition (feeding and energy in the egg) differentially influence larval survival and juvenile quality. We predicted, based on its large egg size, that a reduction in egg size in the echinoid echinoderm Clypeaster rosaceus would affect juvenile size but not time to metamorphosis. We reduced the effective size of whole (W) zygotes by separating blastomeres at the two- or four-cell stages to create half- (H) or quarter-size (Q) “zygotes” and reared larvae to metamorphosis, both with and without particulate food. Larvae metamorphosed at approximately the same time regardless of food or egg size treatment. In contrast, juveniles that developed from W zygotes were significantly larger, had higher organic content and had longer and more numerous spines than juveniles from H or Q zygotes. Larvae from W, H and Q zygotes were able to reach metamorphosis without feeding, suggesting that the evolution of facultative planktotrophy in C. rosaceus was accompanied by more than a simple increase in egg size. In addition, our results suggest that resources lost by halving egg size have a larger effect on larval survival and juvenile quality than those lost by withholding particulate food.  相似文献   

9.

Background

A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus.

Results

Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae.

Conclusions

We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis.  相似文献   

10.
The development of simple, reliable techniques for the laboratory culture of aplysiid gastropods through their complete life cycle, has enabled us to study the larval biology, metamorphosis, and early juvenile development of these animals. Egg masses, duration of the embryonic phase, veligers, and larval growth and development are described for four species of Hawaiian Aplysiidae, namely, Aplysia dactylomela Rang, Aplysia Juliana Quoy and Gaimard, Dolabella auricularia (Lightfoot) and Stylocheilus longicauda (Quoy and Gaimard). Metamorphosis and early juvenile development of A. Juliana are described in detail with additional comments on these processes in the other three species. Length of the embryonic phase and size of the veliger at hatching are a function of the size of the uncleaved egg. All four species develop planktotrophically and have ≈ 30-day larval phases. In each species the larval phase includes a period of rapid shell growth to a species-specific size followed by a non-growth period during which other morphological developments occur to culminate in metamorphic competence. The larvae of each species metamorphose preferentially on a particular species of benthic algae. The events of metamorphosis require 2 to 4 days for completion and transform the planktonic filter-feeding larva into a benthic, radular-feeding juvenile. Postlarval development includes growth of the shell, parapodia, oral tentacles, rhinophores, anal siphon, and structures of the mantle cavity.  相似文献   

11.
To date only few comparative approaches tried to reconstruct the ontogeny of the musculature in invertebrates. This may be due to the difficulties involved in reconstructing three dimensionally arranged muscle systems by means of classical histological techniques combined with light or transmission electron microscopy. Within the scope of the present study we investigated the myogenesis of premetamorphic, metamorphic, and juvenile developmental stages of the anaspidean opisthobranch Aplysia californica using fluorescence F‐actin‐labeling in conjunction with modern confocal laser scanning microscopy. We categorized muscles with respect to their differentiation and degeneration and found three true larval muscles that differentiate during the embryonic and veliger phase and degenerate during or slightly after metamorphosis. These are the larval retractor, the accessory larval retractor, and the metapodial retractor muscle. While the pedal retractor muscle, some transversal mantle fibers and major portions of the cephalopedal musculature are continued and elaborated during juvenile and adult life, the buccal musculature and the anterior retractor muscle constitute juvenile/adult muscles which differentiate during or after metamorphosis. The metapodial retractor muscle has never been reported for any other gastropod taxon. Our findings indicate that the late veliger larva of A. californica shares some common traits with veligers of other gastropods, such as a larval retractor muscle. However, the postmetamorphic stages exhibit only few congruencies with other gastropod taxa investigated to date, which is probably due to common larval but different adult life styles within gastropods. Accordingly, this study provides further evidence for morphological plasticity in gastropod myogenesis and stresses the importance of ontogenetic approaches to understand adult conditions and life history patterns. J. Morphol., 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

12.
13.
We investigated genetic variability and genetic correlations in early life-history traits of Crassostrea gigas. Larval survival, larval development rate, size at settlement and metamorphosis success were found to be substantially heritable, whereas larval growth rate and juvenile traits were not. We identified a strong positive genetic correlation between larval development rate and size at settlement, and argue that selection could optimize both age and size at settlement. However, trade-offs, resulting in costs of metamorphosing early and large, were suggested by negative genetic correlations or covariances between larval development rate/size at settlement and both metamorphosis success and juvenile survival. Moreover, size advantage at settlement disappeared with time during the juvenile stage. Finally, we observed no genetic correlations between larval and juvenile stages, implying genetic independence of life-history traits between life-stages. We suggest two possible scenarios for the maintenance of genetic polymorphism in the early life-history strategy of C. gigas.  相似文献   

14.
Interpreting Geographic Variation in Life-History Traits   总被引:11,自引:1,他引:10  
The geographic variation in the length of the larval periodand the size at metamorphosis of the wood frog,Rana sylvatica,is examined for populations in the tundra of Canada, the mountainsof Virginia, and the lowlands of Maryland. We argue that theobserved differences in developmental plasticity, heriisbilitiesand genetic covariances of traits among localities result fromdifferential selection pressures in each environment, and arerelated to the physiological constraints inherent in developmentand to the degree of compromise between the timing and sizeat metamorphosis allowed in each environment. In Maryland populationsfitness has been maximized by evolutionary changes in size alone;body size in this population is canalized, has low heritabilityand is highly correlated with juvenile survival relative todevelopmental time. In Canada, minimum developmental time yieldsmaximum fitness; the length of the larval period in this populationis canalized and genetically monomorphic relative to body size.In contrast, fitness in the Virginia populations has been determinedby correlated and pleiotropic effects of genes on both developmentaltime and larval body size, and both traits are equally canalized,affect juvenile survivorship equally and display moderate heritabilities.These results stress the importance of interpreting variationin life-history traits relative to constraints inherent in developmentand those imposed by the environment. Heritability and survivorshipdata support the general notion that fitness traits should havelow levels of additive genetic variation, but also suggest thatantagonistic pleiotropy may act to preserve genetic variationin fitness traits under simultaneous selection, and cautionagainst inferring evolutionary importance of individual traitswithout considering the possible presence of pleiotropy.  相似文献   

15.
Metamorphosis in holometabolous insects is mainly based on the destruction of larval tissues. Intensive research in Drosophila melanogaster, a model of holometabolan metamorphosis, has shown that the steroid hormone 20-hydroxyecdysone (20E) signals cell death of larval tissues during metamorphosis. However, D. melanogaster shows a highly derived type of development and the mechanisms regulating apoptosis may not be representative in the insect class context. Unfortunately, no functional studies have been carried out to address whether the mechanisms controlling cell death are present in more basal hemimetabolous species. To address this, we have analyzed the apoptosis of the prothoracic gland of the cockroach Blattella germanica, which undergoes stage-specific degeneration just after the imaginal molt. Here, we first show that B. germanica has two inhibitor of apoptosis (IAP) proteins and that one of them, BgIAP1, is continuously required to ensure tissue viability, including that of the prothoracic gland, during nymphal development. Moreover, we demonstrate that the degeneration of the prothoracic gland is controlled by a complex 20E-triggered hierarchy of nuclear receptors converging in the strong activation of the death-inducer Fushi tarazu-factor 1 (BgFTZ-F1) during the nymphal-adult transition. Finally, we have also shown that prothoracic gland degeneration is effectively prevented by the presence of juvenile hormone (JH). Given the relevance of cell death in the metamorphic process, the characterization of the molecular mechanisms regulating apoptosis in hemimetabolous insects would allow to help elucidate how metamorphosis has evolved from less to more derived insect species.  相似文献   

16.
The Florida stone crab, Menippe mercenaria, is an economically and ecologically important species that ranges from North Carolina throughout the Caribbean and the southeastern Gulf of Mexico. However, there is little known about its early life history stages as compared to other commercially important species in the region. The goal of this research was to examine effects of putative cues on metamorphosis from the megalopa stage to the first juvenile stage. Our study investigated the effect of water-soluble exudates from four substrata, as well as natural biofilms, and exudates from adult stone crabs. In addition, the influence of natural substrata was compared to that of artificial substrata. Adult exudate had no significant effect on metamorphosis, despite a wide range of tested concentrations. In contrast, there was a significant effect on mean time to metamorphosis in experimental groups exposed to multiple cues associated with the brown alga Sargassum fluitans, rubble from stone crab habitat, the eastern oyster Crassostrea virginica, and biofilms associated with the oyster. Furthermore, we provide evidence for metamorphic responses to water-soluble chemical cues, as well as biochemical and physical cues associated with different substrata. Overall results were coherent with the relevant body of previous work on metamorphosis of brachyuran crab larvae and indicate that both physical and chemical cues are important factors in facilitating the settlement and metamorphosis of M. mercenaria larvae in juvenile nursery habitat.  相似文献   

17.
Summary Complex life cycles are ancient and widely distributed, particularly so in the marine environment. Generally, the marine biphasic life cycle consists of pre‐reproductive stages that exist in the plankton for various periods of time before settling and transforming into a benthic reproductive stage. Pre‐reproductive stages are frequently phenotypically distinct from the reproductive stage, and the life cycle transition (metamorphosis) linking the larval and juvenile stages varies in extent of change but is usually rapid. Selection of suitable adult sites apparently involves the capacity to retain the larval state after metamorphic competence is reached. Thus two perennial and related questions arise: How are environmentally dependent rapid transitions between two differentiated functional life history stages regulated (a physiological issue) and how does biphasy arise (a developmental issue)? Two species of solitary ascidian, a sea urchin and a gastropod, share a nitric oxide (NO)‐dependent signaling pathway as a repressive regulator of metamorphosis. NO also regulates life history transitions among several simple eukaryotes. We review the unique properties of inhibitory NO signaling and propose that (a) NO is an ancient and widely used regulator of biphasic life histories, (b) the evolution of biphasy in the metazoa involved repression of juvenile development, (c) functional reasons why NO‐based signaling is well suited as an inhibitory regulator of metamorphosis after competence is reached, and (d) signaling pathways that regulate metamorphosis of extant marine animals may have participated in the evolution of larvae.  相似文献   

18.
We used a half-sib design to examine the genetic components of phenotypic variance in several life-history traits in Hyla crucifer. Egg viability, hatchling size, larval growth rate, length of larval period, and size at metamorphosis play critical roles in determining survivorship and are subject to persistent selection. Egg viability varied among families considerably, with most embryo mortality occurring between gastrulation and neurulation. Hatchling size was the only trait in which maternal effects were influential. Dominance genetic variance played the predominant role in determining phenotypic variance in hatchling size, growth rate, and length of larval period, accounting for, respectively, 70, 63, and 47% of the total variance. Size at metamorphosis displayed little dominance genetic variance and, unlike the other traits, displayed a high heritability. All additive genetic correlations between traits were positive. The directions of environmental correlations were the same as the directions of changes that have been induced in previous experimental work. The correlations due to dominance effects described a principal axis that independent ecological studies indicate to be directly correlated with fitness. These results agree with theoretical expectations for traits under consistent directional selection.  相似文献   

19.
The genetic and developmental bases for trait expression and variation in adults are largely unknown. One system in which genes and cell behaviors underlying adult traits can be elucidated is the larval-to-adult transformation of zebrafish, Danio rerio. Metamorphosis in this and many other teleost fishes resembles amphibian metamorphosis, as a variety of larval traits (e.g., fins, skin, digestive tract, sensory systems) are remodeled in a coordinated manner to generate the adult form. Among these traits is the pigment pattern, which comprises several neural crest-derived pigment cell classes, including black melanophores, yellow xanthophores, and iridescent iridophores. D. rerio embryos and early larvae exhibit a relatively simple pattern of melanophore stripes, but this pattern is transformed during metamorphosis into the more complex pattern of the adult, consisting of alternating dark (melanophore, iridophore) and light (xanthophore, iridophore) horizontal stripes. While it is clear that some pigment cells differentiate de novo during pigment pattern metamorphosis, the extent to which larval and adult pigment patterns are developmentally independent has not been known. In this study, we show that a subset of embryonic/early larval melanophores persists into adult stages in wild-type fish; thus, larval and adult pigment patterns are not completely independent in this species. We also analyze puma mutant zebrafish, derived from a forward genetic screen to isolate mutations affecting postembryonic development. In puma mutants, a wild-type embryonic/early larval pigment pattern forms, but supernumerary early larval melanophores persist in ectopic locations through juvenile and adult stages. We then show that, although puma mutants undergo a somatic metamorphosis at the same time as wild-type fish, metamorphic melanophores that normally appear during these stages are absent. The puma mutation thus decouples metamorphosis of the pigment pattern from the metamorphosis of many other traits. Nevertheless, puma mutants ultimately recover large numbers of melanophores and exhibit extensive pattern regulation during juvenile development, when the wild-type pigment pattern already would be completed. Finally, we demonstrate that the puma mutant is both temperature-sensitive and growth-sensitive: extremely severe pigment pattern defects result at a high temperature, a high growth rate, or both; whereas a wild-type pigment pattern can be rescued at a low temperature and a low growth rate. Taken together, these results provide new insights into zebrafish pigment pattern metamorphosis and the capacity for pattern regulation when normal patterning mechanisms go awry.  相似文献   

20.
The larval patterns of marine invertebrates pose intriguing questions for both evolutionary and developmental biologists. However, combined investigations have been rare. Quantitative models analyze the selective factors that drive evolutionary change in larval nutrition and timing of metamorphosis. Developmental studies describe the morphogenesis characterizing ancestral and derived larval patterns. Rigorous evolutionary analysis of the transition to derived modes of development is lacking and detailed developmental and ecological data are needed to test and refine theoretical models. A major challenge facing studies of life cycle evolution is the elucidation of the genetic structure and covariance of important developmental and larval traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号