首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 10(3)- and 10(4)-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria.  相似文献   

2.
Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria.  相似文献   

3.
The formation of thionates (thiosulfate, trithionate and tetrahionate) during the reduction of sulfate or sulfite was studied with four marine and four freshwater strains of sulfate-reducing bacteria. Growing cultures of two strains of the freshwater species Desulfovibrio desulfuricans formed up to 400 M thiosulfate and 100 M trithionate under conditions of electron donor limitation. Tetrathionate was observed in lower concentrations of up to 30 M. Uncoupler-treated washed cells of the four freshwater strains formed thiosulfate and trithionate at low electron donor concentrations with sulfite in excess. In contrast, only one of four marine strains formed thionates. The freshwater strain Desulfobulbus propionicus transformed sulfite almost completely to thiosulfate and trithionate. The amounts produced increased with time, concentration of added sulfite and cell density. Tetrathionate was detected only occasionally and in low concentrations, and was probably formed by chemical oxidation of thiosulfate. The results confirm the diversity of the sulfite reduction pathways in sulfate-reducing bacteria, and suggest that thiosulfate and trithionate are normal by-products of sulfate reduction.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone  相似文献   

4.
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria which are most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

5.
The sulfate transport mechanism of a marine bacterium, Alteromonas luteo-violaceus, was unique among microorganisms in its extremely low affinity for the sulfate analog thiosulfate. Distinguishing characteristics included weak inhibition of sulfate transport by thiosulfate, inability to transport thiosulfate effectively, poor growth using thiosulfate as the sole source of sulfur, and a mild effect of the sulfhydryl reagent para-hydroxymercuribenzoate. In contrast, sulfate transport by a marine pseudomonad, Pseudomonas halodurans, was strongly inhibited by thiosulfate, and para-hydroxymercuribenzoate reversibly but completely blocked sulfate transport.  相似文献   

6.
Vibrios were isolated in pure culture from the hemolymph of 7 out of 28 dead or dying aquarium lobsters which had been acclimated to 20-22 degrees C. One isolate was identified as Vibrio parahaemolyticus, one as a related marine Vibrio (probably V. marinus), and five as Vibrio alginolyticus. No isolates of halophilic Vibrio species were made from healthy lobsters using thiosulfate citrate bile salts sucrose agar (TCBS).  相似文献   

7.
Three strains of strictly anaerobic Gram-negative, non-sporeforming, motile bacteria were enriched and isolated from freshwater sediments with 1,3-propanediol as sole energy and carbon source. Strain OttPdl was a sulfate-reducing bacterium which grew also with lactate, ethanol, propanol, butanol, 1,4-butanediol, formate or hydrogen plus CO2, the latter only in the presence of acetate. In the absence of sulfate, most of these substrates were fermented to the respective fatty acids in syntrophic cooperation with Methanospirillum hungatei. Sulfur, thiosulfate, or sulfite were reduced, nitrate not. The other two isolates degraded propanediol only in coculture with Methanospirillum hungatei. Strain OttGlycl grew in pure culture with acetoin and with glycerol in the presence of acetate. Strain WoAcl grew in pure culture only with acetoin. Both strains did not grow with other substrates, and did not reduce nitrate, sulfate, sulfur, thiosulfate or sulfite. The isolates were affiliated with the genera Desulfovibrio and Pelobacter. The pathways of propanediol degradation and the ecological importance of this process are discussed.  相似文献   

8.
Uptake of 35S-labelled sulfate and thiosulfate was studied in twenty sulfate-reducing bacteria. Micromolar additions of these substrates were highly accumulated by washed cells of freshwater and marine strains. In marine strains accumulation required Na+. Generally, the uptake capacity was increased after sulfate limitation during growth. With two marine species, Desulfovibrio salexigens and Desulfobacterium autotrophicum, the effects of various ionophores and inhibitors affecting the transmembrane pH or Na+ gradient or the membrane potential were studied. In both strains transport was reversible. There was no discrimination between sulfate and thiosulfate. With increasing additions the amount taken up increased, while the accumulation factor (Cin/Cout) decreased. Uptake was not directly correlated with the ATP level inside the cells. From these results and the action patterns of the inhibitors tested it is concluded that marine sulfate-reducing bacteria accumulate sulfate and thiosulfate electrogenically in symport with Na+ ions, while in freshwater strains protons are symported. The high-accumulating systems are induced only at low sulfate concentration, while low-accumulating systems are active at sulfate-sufficient conditions.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - ETH 157 N, N-dibenzyl-N,N-diphenyl-1,2-diphenylendioxydiacetamide - TCS 3,3,4,5-tetrachlorosalicylanilide  相似文献   

9.
Comparative characterization of Geomyces isolates was performed. The isolates were obtained from Arctic cryopegs and the surrounding ancient marine deposits, from nonsaline permafrost soils, and from temperate environments. Microbiological (cultural and morphological) and molecular criteria were used to confirm the identification of the isolates as Geomyces pannorum. The isolates from cryopegs and surrounding marine deposits were shown to differ from those obtained from nonsaline soils and temperate environments in their ability to grow at negative temperatures (?2°C) under increased salt concentration (10%). The results are discussed in relation to the possible inheritance of the adaptive characteristics acquired in specific environments.  相似文献   

10.
Thermophilic bacteria were isolated from a sulfide-rich, neutral hot spring in Iceland on gelrite minimal medium with 16 mM thiosulfate. The isolates were aerobic, obligate chemolithoautotrophs and used thiosulfate and sulfur as electron donors, producing sulfate from both substrates. No growth was observed with hydrogen as the sole electron donor, and no hydrogenase activity was detected. The cells were gram-negative and usually single, 4—5 μm long and 0.7 μm in diameter and formed sulfur globules after a few days of incubation. By SSU rRNA sequence comparisons, the bacterium was placed in the genus Hydrogenobacter with the closest relative to be Calderobacterium hydrogenophilum with 98.3% sequence similarity. This novel bacterium shows an ecological adaptation to high sulfide springs and is differentiated from its closest known relatives by lack of H2 oxidation, deposition of sulfur and lower growth temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号