首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campylobacter species are frequently identified as a cause of human gastroenteritis, often from eating or mishandling contaminated poultry products. Quantitative knowledge of transmission of Campylobacter in broiler flocks is necessary, as this may help to determine the moment of introduction of Campylobacter in broiler flocks more precisely. The aim of this study was to determine the transmission rate parameter in broiler flocks. Four experiments were performed, each with four Campylobacter-inoculated chicks housed with 396 contact chicks per group. Colonization was monitored by regularly testing fecal samples for Campylobacter. A mathematical model was used to quantify the transmission rate, which was determined to be 1.04 new cases per colonized chick per day. This would imply that, for example, in a flock of 20,000 broilers, the prevalence of Campylobacter would increase from 5% to 95% within 6 days after Campylobacter introduction. The model and the estimated transmission rate parameter can be used to develop a suitable sampling scheme to determine transmission in commercial broiler flocks, to estimate whether control measures can reduce the transmission rate, or to estimate when Campylobacter was introduced into a colonized broiler flock on the basis of the time course of transmission in the flock.  相似文献   

2.
The study aimed to identify sources of campylobacter in 10 housed broiler flocks from three United Kingdom poultry companies. Samples from (i) the breeder flocks, which supplied the broilers, (ii) cleaned and disinfected houses prior to chick placement, (iii) the chickens, and (iv) the environments inside and outside the broiler houses during rearing were examined. Samples were collected at frequent intervals and examined for Campylobacter spp. Characterization of the isolates using multilocus sequence typing (MLST), serotyping, phage typing, and flaA restriction fragment length polymorphism typing was performed. Seven flocks became colonized during the growing period. Campylobacter spp. were detected in the environment surrounding the broiler house, prior to as well as during flock colonization, for six of these flocks. On two occasions, isolates detected in a puddle just prior to the birds being placed were indistinguishable from those colonizing the birds. Once flocks were colonized, indistinguishable strains of campylobacter were found in the feed and water and in the air of the broiler house. Campylobacter spp. were also detected in the air up to 30 m downstream of the broiler house, which raises the issue of the role of airborne transmission in the spread of campylobacter. At any time during rearing, broiler flocks were colonized by only one or two types determined by MLST but these changed, with some strains superseding others. In conclusion, the study provided strong evidence for the environment as a source of campylobacters colonizing housed broiler flocks. It also demonstrated colonization by successive campylobacter types determined by MLST during the life of a flock.  相似文献   

3.
Campylobacter species are frequently identified as a cause of human gastroenteritis, often from eating or mishandling contaminated poultry products. Quantitative knowledge of transmission of Campylobacter in broiler flocks is necessary, as this may help to determine the moment of introduction of Campylobacter in broiler flocks more precisely. The aim of this study was to determine the transmission rate parameter in broiler flocks. Four experiments were performed, each with four Campylobacter-inoculated chicks housed with 396 contact chicks per group. Colonization was monitored by regularly testing fecal samples for Campylobacter. A mathematical model was used to quantify the transmission rate, which was determined to be 1.04 new cases per colonized chick per day. This would imply that, for example, in a flock of 20,000 broilers, the prevalence of Campylobacter would increase from 5% to 95% within 6 days after Campylobacter introduction. The model and the estimated transmission rate parameter can be used to develop a suitable sampling scheme to determine transmission in commercial broiler flocks, to estimate whether control measures can reduce the transmission rate, or to estimate when Campylobacter was introduced into a colonized broiler flock on the basis of the time course of transmission in the flock.  相似文献   

4.
Poultry has long been cited as a reservoir for Campylobacter spp., and litter has been implicated as a vehicle in their transmission. Chicks were raised on litter removed from a broiler house positive for Campylobacter jejuni. Litter was removed from the house on days 0, 3, and 9 after birds were removed for slaughter. Chicks were raised on these three litters under controlled conditions in flocks of 25. None of these birds yielded C. jejuni in their cecal droppings through 7 weeks. Two successive flocks from the same Campylobacter-positive broiler house were monitored for Campylobacter colonization. Campylobacter jejuni prevalence rates were determined for each flock. Randomly amplified polymorphic DNA (RAPD)-PCR and 23S rRNA-PCR typing methods were used to group isolates. A high prevalence (60%) of C. jejuni in flock 1 coincided with the presence of an RAPD profile not appearing in flock 2, which had a lower rate of prevalence (28%). A 23S rRNA-PCR typing method was used to determine if strains with different RAPD profiles and different prevalence rates contained different 23S sequences. RAPD profiles detected with higher prevalence rates contained a spacer in the 23S rRNA region 100% of the time, while RAPD profiles found with lower prevalence rates contained an intervening sequence less than 2% of the time. Data suggest varying colonizing potentials of different RAPD profiles and a source other than previously used litter as a means of transmission of C. jejuni. These molecular typing methods demonstrate their usefulness, when used together, in this epidemiologic investigation.  相似文献   

5.
The zoonotic association between Campylobacter bacteria in poultry and humans has been characterized by decades of research which has attempted to elucidate the epidemiology of this complex relationship and to reduce carriage within poultry. While much work has focused on the mechanisms facilitating its success in contaminating chicken flocks (and other animal hosts), it remains difficult to consistently exclude Campylobacter under field conditions. Within the United Kingdom poultry industry, various bird genotypes with widely varying growth rates are available to meet market needs and consumer preferences. However, little is known about whether any differences in Campylobacter carriage exist across this modern broiler range. The aim of this study was to establish if a relationship exists between growth rate or breed and cecal Campylobacter concentration after natural commercial flock Campylobacter challenge. In one investigation, four pure line genotypes of various growth rates were grown together, while in the second, eight different commercial broiler genotypes were grown individually. In both studies, the Campylobacter concentration was measured in the ceca at 42 days of age, revealing no significant difference in cecal load between birds of different genotypes both in mixed- and single-genotype pens. This is important from a public health perspective and suggests that other underlying reasons beyond genotype are likely to control and affect Campylobacter colonization within chickens. Further studies to gain a better understanding of colonization dynamics and subsequent proliferation are needed, as are novel approaches to reduce the burden in poultry.  相似文献   

6.
A longitudinal study of bacteriophages and their hosts was carried out at a broiler house that had been identified as having a population of Campylobacter-specific bacteriophages. Cloacal and excreta samples were collected from three successive broiler flocks reared in the same barn. Campylobacter jejuni was isolated from each flock, whereas bacteriophages could be isolated from flocks 1 and 2 but were not isolated from flock 3. The bacteriophages isolated from flocks 1 and 2 were closely related to each other in terms of host range, morphology, genome size, and genetic content. All Campylobacter isolates from flock 1 were genotypically indistinguishable by pulsed-field gel electrophoresis (PFGE). PFGE and multilocus sequence typing indicated that this C. jejuni type was maintained from flock 1 to flock 2 but was largely superseded by three genetically distinct C. jejuni types insensitive to the resident bacteriophages. All isolates from the third batch of birds were insensitive to bacteriophages and genotypically distinct. These results are significant because this is the first study of an environmental population of C. jejuni bacteriophages and their influence on the Campylobacter populations of broiler house chickens. The role of developing bacteriophage resistance was investigated as this is a possible obstacle to the use of bacteriophage therapy to reduce the numbers of campylobacters in chickens. In this broiler house succession was largely due to incursion of new genotypes rather than to de novo development of resistance.  相似文献   

7.
The onset and prevalence of Campylobacter colonization in broilers and layers at commercial farms with low biosecurity in tropical climates were tested. Despite the presence of positive animals at the same farms, the broiler flocks tested negative until, on average, 21 days. Prelaying flocks showed a higher prevalence than laying flocks.  相似文献   

8.
Aims: To test the efficacy of enhanced biosecurity measures on poultry farms for reducing environmental contamination with Campylobacter during partial depopulation of broiler flocks prior to normal slaughter age. The study has also evaluated the risk of infection from live‐bird transport crates that are routinely cleaned at the slaughterhouse, but may remain contaminated. Methods and Results: On‐farm sampling and Campylobacter isolation was undertaken to compare the prevalence of contamination on vehicles, equipment and catching personnel during farm visits that took place under normal or enhanced biosecurity. Campylobacters were found in almost all types of sample examined and enhanced biosecurity reduced the prevalence. However, the additional measures failed to prevent colonisation of the flocks. For transport crates, challenge trials involved exposure of broilers to commercially cleaned crates and genotyping of any campylobacters isolated. The birds were rapidly colonised with the same genotypes as those isolated from the cleaned crates. Conclusions: The enhanced biosecurity measures were insufficient to prevent flock colonisation, and the problem was exacerbated by inadequate cleaning of transport crates at the slaughterhouse. Significance and Impact of the Study: Current commercial practices in the United Kingdom facilitate the spread of campylobacters among broiler chicken flocks. Prevention of flock infection appears to require more stringent biosecurity than that studied here.  相似文献   

9.
This study investigated the relationship between flock health and Campylobacter infection of housed commercial broilers in Great Britain. Thirty ceca were collected at slaughter from batches of broilers from 789 flocks, at either full or partial depopulation, between December 2003 and March 2006 and examined individually for Campylobacter by direct plating onto selective media. Management and health data were collected from each flock and included information on mortality or culling during rearing, the number of birds rejected for infectious or noninfectious causes at slaughter, the proportion of birds with digital dermatitis (also termed hock burn), and other general characteristics of the flock. Campylobacter spp. were isolated from 280 (35%) flocks. The relationship between bird health and welfare and Campylobacter status of flocks was assessed using random-effects logistic regression models, adjusting for region, month, year, and rearing regime. Campylobacter-positive batches of ceca were associated with higher levels of rejection due to infection (odds ratio [OR], 1.5; 95% confidence interval [CI95%], 0.98 to 2.30) and digital dermatitis (OR, 2.08; CI95%, 1.20 to 3.61). Furthermore, higher levels of these conditions were also associated with the highest-level category of within-flock Campylobacter prevalence (70 to 100%). These results could indicate that improving health and welfare may also reduce Campylobacter in broilers.  相似文献   

10.
The study aimed to identify sources of campylobacter in 10 housed broiler flocks from three United Kingdom poultry companies. Samples from (i) the breeder flocks, which supplied the broilers, (ii) cleaned and disinfected houses prior to chick placement, (iii) the chickens, and (iv) the environments inside and outside the broiler houses during rearing were examined. Samples were collected at frequent intervals and examined for Campylobacter spp. Characterization of the isolates using multilocus sequence typing (MLST), serotyping, phage typing, and flaA restriction fragment length polymorphism typing was performed. Seven flocks became colonized during the growing period. Campylobacter spp. were detected in the environment surrounding the broiler house, prior to as well as during flock colonization, for six of these flocks. On two occasions, isolates detected in a puddle just prior to the birds being placed were indistinguishable from those colonizing the birds. Once flocks were colonized, indistinguishable strains of campylobacter were found in the feed and water and in the air of the broiler house. Campylobacter spp. were also detected in the air up to 30 m downstream of the broiler house, which raises the issue of the role of airborne transmission in the spread of campylobacter. At any time during rearing, broiler flocks were colonized by only one or two types determined by MLST but these changed, with some strains superseding others. In conclusion, the study provided strong evidence for the environment as a source of campylobacters colonizing housed broiler flocks. It also demonstrated colonization by successive campylobacter types determined by MLST during the life of a flock.  相似文献   

11.
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5′-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium.  相似文献   

12.
In many industrialized countries, the incidence of campylobacteriosis exceeds that of salmonellosis. Campylobacter bacteria are transmitted to humans mainly in food, especially poultry meat products. Total prevention of Campylobacter colonization in broiler flocks is the best way to reduce (or eliminate) the contamination of poultry products. The aim of this study was to establish the sources and routes of contamination of broilers at the farm level. Molecular typing methods (DNA macrorestriction pulsed-field gel electrophoresis and analysis of gene polymorphism by PCR-restriction fragment length polymorphism) were used to characterize isolates collected from seven broiler farms. The relative genomic diversity of Campylobacter coli and Campylobacter jejuni was determined. Analysis of the similarity among 116 defined genotypes was used to determine clusters within the two species. Furthermore, evidence of recombination suggested that there were genomic rearrangements within the Campylobacter populations. Recovery of related clusters from different broiler farms showed that some Campylobacter strains might be specifically adapted to poultry. Analysis of the Campylobacter cluster distribution on three broiler farms showed that soil in the area around the poultry house was a potential source of Campylobacter contamination. The broilers were infected by Campylobacter spp. between days 15 and 36 during rearing, and the type of contamination changed during the rearing period. A study of the effect of sanitary barriers showed that the chickens stayed Campylobacter spp. free until they had access to the open area. They were then rapidly colonized by the Campylobacter strains isolated from the soil.  相似文献   

13.
Campylobacter infections are increasing and pose a serious public health problem in Denmark. Infections in humans and broiler flocks show similar seasonality, suggesting that climate may play a role in infection. We examined the effects of temperature, precipitation, relative humidity, and hours of sunlight on Campylobacter incidence in humans and broiler flocks by using lag dependence functions, locally fitted linear models, and cross validation methods. For humans, the best model included average temperature and sunlight 4 weeks prior to infection; the maximum temperature lagged at 4 weeks was the best single predictor. For broilers, the average and maximum temperatures 3 weeks prior to slaughter gave the best estimate; the average temperature lagged at 3 weeks was the best single predictor. The combined effects of temperature and sunlight or the combined effects of temperature and relative humidity predicted the incidence in humans equally well. For broiler flock incidence these factors explained considerably less. Future research should focus on elements within the broiler environment that may be affected by climate, as well as the interaction of microclimatic factors on and around broiler farms. There is a need to quantify the contribution of broilers as a source of campylobacteriosis in humans and to further examine the effect of temperature on human incidence after this contribution is accounted for. Investigations should be conducted into food consumption and preparation practices and poultry sales that may vary by season.  相似文献   

14.
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.  相似文献   

15.
Through the national surveillance program for Campylobacter spp., nine broiler chicken farms that were infected with Campylobacter jejuni in at least five rotations in 1998 were identified. One additional farm, located at the island of Bornholm where divided slaughter is used extensively, was also selected. Twelve broiler houses located on 10 farms were included in the study. The C. jejuni isolates collected from the selected houses during the surveillance were typed using fla typing and macrorestriction profiling (MRP), and a subset of the isolates, representing each of the identified clones, was serotyped according to the Penner scheme. Pulsed-field gel electrophoresis typing using SmaI and KpnI revealed that the majority of houses (11 of 12) carried identical isolates in two or more broiler flocks. Such persistent clones were found in 63% of all flocks (47 of 75). The majority of persistent clones (7 of 13) had fla type 1/1, but MRPs distinguished between isolates from different houses, and fla type 1/1 clones belonged to different serotypes. Seven houses carried persistent clones that covered an interval of at least four broiler flock rotations, or at least one half year. The dominant fla type (1/1) was represented by 44% of isolates, or by at least one isolate from 31 of 62 broiler flocks. This significantly exceeded the prevalence of fla type 1/1 C. jejuni isolates that we have estimated from other studies and suggests that isolates carrying this fla type are overrepresented in flocks with recurrent Campylobacter problems. The MRPs of clones belonging to fla type 1/1 serotype O:2 isolated from persistently infected flocks shared a high percentage of bands compared to the remaining isolates, indicating that some clones that have the ability to cause persistent infections in broiler farms are highly related to each other.  相似文献   

16.
Broiler flocks often become infected with Campylobacter and Salmonella, and the exact contamination routes are still not fully understood. Insects like darkling beetles and their larvae may play a role in transfer of the pathogens between consecutive cycles. In this study, several groups of beetles and their larvae were artificially contaminated with a mixture of Salmonella enterica serovar Paratyphi B Variant Java and three C. jejuni strains and kept for different time intervals before they were fed to individually housed chicks. Most inoculated insects were positive for Salmonella and Campylobacter just before they were fed to the chicks. However, Campylobacter could not be isolated from insects that were kept for 1 week before they were used to mimic an empty week between rearing cycles. All broilers fed insects that were inoculated with pathogens on the day of feeding showed colonization with Campylobacter and Salmonella at levels of 50 to 100%. Transfer of both pathogens by groups of insects that were kept for 1 week before feeding to the chicks was also observed, but at lower levels. Naturally contaminated insects that were collected at a commercial broiler farm colonized broilers at low levels as well. In conclusion, the fact that Salmonella and Campylobacter can be transmitted via beetles and their larvae to flocks in successive rearing cycles indicates that there should be intensive control programs for exclusion of these insects from broiler houses.  相似文献   

17.
The course and clinical appearance of an Eimeria species infection in chicken flocks depend on the response of an individual bird to infection and on population-dynamics of the infection in the flock. Differences in ingested numbers of oocysts may affect oocyst load in the flock and the subsequent infectious dose for not yet infected birds. To study the link between numbers of oocysts excreted by infected birds and transmission of Eimeria acervulina, experiments were carried out with 42 pairs of broiler chickens using inoculation doses with 5, 50, 500 or 50,000 sporulated oocysts. In each pair one bird was inoculated and the other bird was contact-exposed. All contact birds became infected, which occurred on average within 34 h after exposure to an inoculated bird. Although a higher inoculation dose resulted in higher oocyst excretion in inoculated and contact-infected birds, only small non-significant differences in transmission rates between groups were found.  相似文献   

18.
Campylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time. There was no correlation with season, temperature, the amount of rain and sunshine, or the dynamics of colonization amongst geographically and temporally matched broiler flocks. The higher prevalence rates coincided with the age at which broiler chickens are typically slaughtered, but then in the absence of bio-security or other intervention methods, and despite changes in flock management, the prevalence fell to significantly lower levels for the remainder of the study. The genetic diversity of Campylobacter increased as the flock aged, implying that genotypes were accumulated within the flock and may persist for a long time. A better understanding of the ecology of Campylobacter within commercial chicken flocks will allow the design of more effective farm-based interventions.  相似文献   

19.

Background  

Following increased rates of human campylobacteriosis in the late 1990's, and their apparent association with increased consumption of fresh chicken meat, a longitudinal study was conducted in Iceland to identify the means to decrease the frequency of broiler flock colonization with Campylobacter. Our objective in this study was to identify risk factors for flock colonization acting at the broiler farm level.  相似文献   

20.
Campylobacter jejuni is a major cause of bacterial food-borne infection in the industrial world. There is evidence that C. jejuni is present in eggs and hatchery fluff, opening the possibility for vertical transmission from hens to progeny. Poultry operations in Iceland provide an excellent opportunity to study this possibility, since breeding flocks are established solely from eggs imported from grandparent flocks in Sweden. This leaves limited opportunity for grandparents and their progeny to share isolates through horizontal transmission. While Campylobacter was not detected in all grandparent flocks, 13 of the 16 egg import lots consisted of eggs gathered from one or more Campylobacter-positive grandparent flocks. No evidence of Campylobacter was found by PCR in any of the 10 relevant quarantine hatchery fluff samples examined, and no Campylobacter was isolated from the parent birds through 8 weeks, while they were still in quarantine rearing facilities. After the birds were moved to less biosecure rearing facilities, Campylobacter was isolated, and 29 alleles were observed among the 224 isolates studied. While three alleles were found in both Sweden and Iceland, in no case was the same allele found both in a particular grandparent flock and in its progeny. We could find no evidence for vertical transmission of Campylobacter to the approximately 60,000 progeny parent breeders that were hatched from eggs coming from Campylobacter-positive grandparent flocks. If vertical transmission is occurring, it is not a significant source for the contamination of chicken flocks with Campylobacter spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号