首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our study was aimed at understanding physiological responses to trinitrotoluene (TNT) soil contamination, and using optical methods to detect TNT-induced stress in a woody plant prior to visible changes. Myrica cerifera plants were potted in soil concentrations of TNT ranging from 30–500 mg kg?1. Physiological measurements were significantly affected by TNT exposure at all treatment levels, and photosynthetic decline likely resulted from metabolic impairment rather than stomatal closure as the experiment progressed. Several reflectance indices were able to detect TNT-induced stress before any changes in chlorophyll concentrations occurred. The most sensitive index was the simple ratio R761/R757 which is linked to fluorescence in-filling of the 02 atmospheric absorption. Changes at R740/R850 and R735/R850 may be attributed to both fluorescence and structural characteristics of leaf anatomy in the near infrared region. This could have been influenced by transformation and conjugation of TNT metabolites with other compounds. chlorophyll index (CHL) or in the water band index (WBI970), which are indices typically associated with drought stress, and may provide a means of separating stress due to explosives. Further studies need to be conducted with a combination of stressors (TNT and natural) to determine if responses are in fact generalized or if any of these changes are separable from natural stress.  相似文献   

2.
《Process Biochemistry》2010,45(6):993-1001
The combined process of immobilized microorganism-biological filter was used to degrade TNT in an aqueous solution. The results showed that the process could effectively degrade TNT, which was not detected in the effluent of the system. GC/MS analysis identified 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT), 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and 2,4-diamino-6-nitrotoluene (2,6-DA-4-NT) as the main anaerobic degradation products. In addition, the Haldane model successfully described the anaerobic degradation of TNT with high correlation coefficients (R2 = 0.9803). As the electron donor, ethanol played a major role in the TNT biodegradation. More than twice the theoretical requirement of ethanol was necessary to achieve a high TNT degradation rate (above 97.5%). Moreover, Environment Scan Electron Microscope (ESEM) analysis revealed that a large number of globular microorganisms were successfully immobilized on the surface of the carrier. Further analysis by Polymerase Chain Reaction (PCR)-Denaturing Gradient Gel Electrophoresis (DGGE) demonstrated that the special bacterial for TNT degradation may have generated during the domestication with TNT for 150 days. The dominant species for TNT degradation were identified by comparing gene sequences with Genebank.  相似文献   

3.
Microbial 2,4,6-trinitrotoluene (TNT) biotransformation via sequential nitro-reduction appears a ubiquitous process, but the kinetics of these transformations have been poorly understood or described. TNT transformation by Escherichia coli was monitored and a kinetic model for reductive TNT depletion was developed and experimentally calibrated in this report. Using resting cells of aerobically pregrown E. coli, TNT was quickly reduced to hydroxylaminodinitrotoluenes. The standard Michaelis–Menten model was modified to include three additional parameters: product toxicity (T c), substrate inhibition (K i), and intracellular reducing power (RH) limitation. Experimentally measured product toxicity (5.2 μmol TNT/mg cellular protein) closely matched the best-fit model value (2.84 μmol TNT/mg cellular protein). Parameter identifiability and reliability (k m, K s, T c, and K i) was evaluated and confirmed through sensitivity analyses and via Monte Carlo simulations. The resulting kinetic model adequately described TNT reduction kinetics by E. coli resting cells in the absence or presence of reducing power limitation.  相似文献   

4.
Based on dissipative particle dynamics (DPD) methods and experimental data, we used an empirical relationship between the DPD temperature and the real temperature to build a model that describes the viscosity of molten TNT fluids. The errors in the predicted viscosity based on this model were no more than 2.3 %. We also studied the steady-state shear rheological behavior of molten TNT fluids containing nanoparticles (“nanofluids”). The dependence of the nanofluid viscosity on the temperature was found to satisfy an Arrhenius-type equation, η?=?Ae B/T , where B, the flow activation energy, depends on particle content, size, and shape. We modified the Einstein-type viscosity model to account for the effects of nanoparticle solvation in TNT nanofluids. The resulting model was able to correctly predict the viscosities of suspensions containing nano- to microsized particles, and did not require any changes to the physical background of Einstein’s viscosity theory.
Graphical Abstract The revised Einstein viscosity model that correctly predict the viscosity of TNT suspensions containing nanoparticles
  相似文献   

5.
Plants can be used for effective and economical remediation of soil provided they are tolerant or resistant to the contaminants. Greenhouse experiments were conducted to determine the tolerance of the cool-season grasses: smooth bromegrass (Bromus inermus Leyss.) and tall fescue (Festuca arundinaceae Schreb), and the warm-season grasses: big bluestem (Andropogon gerardii Vitman) and switchgrass (Panicum virgatum L.) to TNT (2,4,6-trinitrotoluene) in soil. TNT-contaminated soil was mixed with uncontaminated soil to obtain water-extractable TNT concentrations ranging from 71 to 435 mg kg-1, corresponding to acetonitrile-extractable concentrations of 278 to 3115 mg kg-1. Germination, shoot and root dry weight, and root area were measured in response to TNT concentrations in the soil mixtures. Germination and height of the warm-season grass species were more sensitive than the cool-season grass species to increasing TNT concentrations in soil. Significant reductions in shoot and root growth were observed in cool-season grasses at lower TNT concentrations in soil compared with warm-season grasses in the soil mixtures. Results indicated that the warm-season grasses can be established in soil containing less than 86 mg of water-extractable TNT kg-1, based on 80% of measured growth in uncontaminated control soil.  相似文献   

6.
The transformation of trinitrotoluene (TNT) by several mutant strains of Clostridium acetobutylicum has been examined to analyze the maximal rate of initial transformation, determine the effects of metabolic mutations of the host on transformation rate, and to assess the cell metabolic changes brought about during TNT transformation. Little difference in the maximal rate of TNT degradation in early acid phase cultures was found between the parental ATCC 824 strain and strains altered in the acid forming pathways (phosphotransacetylase, or butyrate kinase) or in a high-solvent-producing strain (mutant B). This result is in agreement with the previous findings of a similar degradation rate in a degenerate strain (M5) that had lost the ability to produce solvent. A series of antisense constructs were made that reduced the expression of hydA, encoding the Fe-hydrogenase, or hydE and hydF, genes encoding hydrogenase maturating proteins. While the antisense hydA strain had only ~30 % of the activity of wild type, the antisense hydE strain exhibited a TNT degradation rate around 70 % that of the parent. Overexpression of hydA modestly increased the TNT degradation rate in acid phase cells, suggesting the amount of reductant flowing into hydrogenase rather than the hydrogenase level itself was a limiting factor in many situations. The redox potential, hydrogen evolution, and organic acid metabolites produced during rapid TNT transformation in early log phase cultures were measured. The redox potential of the acid-producing culture decreased from ?370 to ?200 mV immediately after addition of TNT and the hydrogen evolution rate decreased, lowering the hydrogen to carbon dioxide ratio from 1.4 to around 1.1 for 15 min. During the time of TNT transformation, the treated acidogenic cells produced less acetate and more butyrate. The results show that during TNT transformation, the cells shift metabolism away from hydrogen formation to reduction of TNT and the resulting effects on cell redox cofactors generate a higher proportion of butyrate.  相似文献   

7.
A systematic evaluation of the ability of different bacterial genera to transform 2,4,6-trinitrotoluene (TNT), and grow in its presence, was conducted. Aerobic Gram-negative organisms degraded TNT and evidenced net consumption of reduced metabolites when cultured in molasses medium. Some Gram-negative isolates transformed all the initial TNT to undetectable metabolites, with no adsorption of TNT or metabolites to cells. Growth and TNT transformation capacity of Gram-positive bacteria both exhibited 50% reductions in the presence of approximately 10 μg TNT ml−1. Most non-sporeforming Gram-positive organisms incubated in molasses media amended with 80 μg TNT ml−1 became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 μg TNT ml−1, indicating that TNT sensitivity is linked to metabolic activity. These results indicate that the microbial ecology of soil may be severely impacted by TNT contamination. Received: 2 December 1996 / Accepted: 3 February 1997  相似文献   

8.
Successful microbial-mediated remediation requires transformationpathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, degraded 100 mg TNT L-1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2'-azoxytoluene (2,2'AZT, primarily in the cell fraction), which accumulated as major products via the intermediate2-hydroxylamino-4,6-dinitrotoluene (2HADNT). The 2HADNT and2,2'AZT were relatively less toxic to the strain than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT) and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline (3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX.  相似文献   

9.
The enzymatic transformation of 2,4,6-trinitrotoluene (TNT) by purified XenB, an NADPH-dependent flavoprotein oxidoreductase from Pseudomonas fluorescens I-C, was evaluated by using natural abundance and [U-14C]TNT preparations. XenB catalyzed the reduction of TNT either by hydride addition to the aromatic ring or by nitro group reduction, with the accumulation of various tautomers of the protonated dihydride-Meisenheimer complex of TNT, 2-hydroxylamino-4,6-dinitrotoluene, and 4-hydroxylamino-2,6-dinitrotoluene. Subsequent reactions of these metabolites were nonenzymatic and resulted in predominant formation of at least three dimers with an anionic m/z of 376 as determined by negative-mode electrospray ionization mass spectrometry and the release of ~0.5 mol of nitrite per mol of TNT consumed. The extents of the initial enzymatic reactions were similar in the presence and in the absence of O2, but the dimerization reaction and the release of nitrite were favored under aerobic conditions or under anaerobic conditions in the presence of NADP+. Reactions of chemically and enzymatically synthesized and high-pressure liquid chromatography-purified TNT metabolites showed that both a hydroxylamino-dinitrotoluene isomer and a tautomer of the protonated dihydride-Meisenheimer complex of TNT were required precursors for the dimerization and nitrite release reactions. The m/z 376 dimers also reacted with either dansyl chloride or N-1-naphthylethylenediamine HCl, providing evidence for an aryl amine functional group. In combination, the experimental results are consistent with assigning the chemical structures of the m/z 376 species to various isomers of amino-dimethyl-tetranitrobiphenyl. A mechanism for the formation of these proposed TNT metabolites is presented, and the potential enzymatic and environmental significance of their formation is discussed.  相似文献   

10.
Anaerobic transformation of 2,4,6-trinitrotoluene (TNT)   总被引:12,自引:0,他引:12  
A sulfate-reducing bacterium using trinitrotoluene (TNT) as the sole nitrogen source was isolated with pyruvate and sulfate as the energy sources. The organism was able to reduce TNT to triaminotoluene (TAT) in growing cultures and cell suspensions and to further transform TAT to still unknown products. Pyruvate, H2, or carbon monoxide served as the electron donors for the reduction of TNT. The limiting step in TNT conversion to TAT was the reduction of 2,4-diamino-6-nitrotoluene (2,4-DANT) to triaminotoluene. The reduction proceeded via 2,4-diamino-6-hydroxylaminotoluene (DAHAT) as an intermediate. The intermediary formation of DAHAT was only observed in the presence of carbon monoxide or hydroxylamine, respectively. The reduction of DAHAT to triaminotoluene was inhibited by both CO and NH2OH. The inhibitors as well as DANT and DAHAT significantly inhibited sulfide formation from sulfite. The data were taken as evidence for the involvement of dissimilatory sulfite reductase in the reduction of DANT and/or DAHAT to triaminotoluene. Hydrogenase purified from Clostridium pasteurianum and carbon monoxide dehydrogenase partially purified from Clostridium thermoaceticum also catalyzed the reduction of DANT in the presence of methyl viologen or ferredoxin, however, as the main reduction product DAHAT rather than triaminotoluene was formed. The findings could explain the function of CO as an electron donor for the DANT reduction (to DAHAT) and the concomitant inhibitory effect of CO on triaminotoluene formation (from DAHAT) by the inhibition of sulfite reductase. Triaminotoluene is further anaerobically converted to unknown products by the isolate under sulfate-reducing and by a Pseudomonas strain under denitrifying conditions. Triaminotoluene conversion was also catalyzed in the absence of cells under aerobic conditions by trace elements, especially by Mn2+, accompanied by the elimination of ammonia in a stoichiometry of 1 NH3 released per TAT transformed. The results might be of interest for the bioremediation of wastewater polluted with nitroaromatic compounds.Abbreviations TNT = 2,4,6-Trinitrotoluene DANT - 2,4-DANT = 2,4-Diamino-6-nitrotoluene - 2,6-DANT = 2,6-Diamino-4-nitrotoluene - ADNT = aminodinitrotoluene - 2-ADNT and 4-ADNT amino substituent at positions 2 or 4 - TAT = 2,4,6-Triaminotoluene - DAHAT = 2,4-Diamino-6-hydroxylaminotoluene - MV = Methyl viologen - Fd = Ferredoxin - H2ase = Hydrogenase - CODH = Carbon monoxide dehydrogenase - Pyr: Fd OR = Pyruvate: ferredoxin oxidoreductase - U = Units = mol of substrate converted per min  相似文献   

11.
Escherichia coli grew aerobically with 2,4,6-trinitrotoluene (TNT) as sole nitrogen source and caused TNT's partial denitration. This reaction was enhanced in nongrowing cell suspensions with 0.516 mol nitrite released per mol TNT. Cell extracts denitrated TNT in the presence of NAD(P)H. Isomers of amino-dimethyl-tetranitrobiphenyl were detected and confirmed with U-15N-labeled TNT.  相似文献   

12.
High concentrations of 2,4,6-trinitrotoluene (TNT) and related nitroaromatic compounds are commonly found in soil and groundwater at former explosive plants. The bacterium, Raoultella terrigena strain HB, isolated from a contaminated site, converts TNT into the corresponding amino products. Radio-HPLC analysis with [14C]TNT identified aminodinitrotoluene, diaminonitrotoluene and azoxy-dimers as the main metabolites. Transformation rate and the type of metabolites that predominated in the culture medium and within the cells were significantly influenced by the culture conditions. The NAD(P)H-dependent enzymatic reduction of nitro-substituted compounds by cell-free extracts of R. terrigena was evaluated in vitro.  相似文献   

13.
Summary Cell suspension cultures of Datura innoxia were incubated in the presence of the nitro-substituted explosives 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazine (RDX), and 1,3,5,7-tetranitro-1,3,5,7-tetraazocyclooctane (HMX). Cellular tolerance levels and TNT biotransformation kinetics were examined. Tolerance to TNT varied as cell suspensions aged. Concentrations of RDX or HMX in excess of reported solubility limits produced no observable changes in cell viability. GC/MS analysis of TNT-treated cell media and cell lysates revealed rapid removal of TNT. Within 12 h, less than 1% of the initial TNT remained in the growth medium. Aminodinitrotoluenes (ADNTs), known metabolites of TNT, accumulated transiently in cell lysates, and to a lesser extent in cell media. ADNT concentrations started to decrease after 3 h. After 12 h, less than 5% of the initial TNT could be detected as ADNT. Total ADNTs never exceeded 26% of initial TNT, suggesting that additional biotransformation steps also occurred. No other nitroaromatics were detected. A pseudo-first order rate constant for TNT clearance was calculated, k=0.40 h−1. D. innoxia cell suspension cultures demonstrated virtually complete clearance of TNT and of subsequent ADNT metabolites in less than 12 h. This rapid metabolism of nitroaromatics by the Datura cell suspension system indicates the utility of this system for further molecular and biochemical studies.  相似文献   

14.
Investigations were carried out to evaluate the level of incorporation of radiolabeled 2,4,6-trinitrotoluene (TNT) and metabolites into the bacterial biomass of two different bacterial species after cometabolically mediated TNT transformation. Biotransformation experiments with 14C-TNT indicated that TNT was not mineralized; however, carbon derived from TNT became associated with the cells. It was found that more than 42% of the initially applied radiolabel was associated with the cell biomass after cometabolic 14C-TNT transformation with the strictly anerobic Desulfovibrio species strain SHV, whereas with the strictly aerobic Serratia plymuthica species strain B7, 32% of cell-associated 14C activity was measured. The remainder of the radiolabel was present in the supernatants of the liquid cultures in the form of different TNT metabolites. Under anoxic conditions with the Desulfovibrio species, TNT was ultimately transformed to 2,4,6-triaminotoluene (TAT) and both diaminonitrotoluene isomers, whereas under oxic conditions with the Serratia species, TNT was converted to hydroxylaminodinitrotoluenes and aminodinitrotoluenes, with 4-amino-2,6-dinitrotoluene (4ADNT) being the major end product. In both culture supernatants, small amounts of very polar, radiolabeled, but unidentified metabolites were detected. At the end of the experiments approximately 92% and 96% of the originally applied radioactivity was recovered in the studies with the Serratia and Desulfovibrio species, respectively. Received: 21 May 1998 / Accepted: 6 July 1998  相似文献   

15.
Easy methods to study the smart energetic TNT/CL-20 co-crystal   总被引:1,自引:0,他引:1  
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a high-energy nitramine explosive with high mechanical sensitivity. 2,4,6-trinitrotoluene (TNT) is insensitive but by no means a high performance explosive. To reveal the significant importance and smart-material functionality of the energetic-energetic co-crystals, the stability, mechanical and explosive properties TNT/CL-20 co-crystal, TNT crystal and CL-20 crystal were studied. Non-hydrogen bonded non-covalent interactions govern the structures of energetic-energetic co-crystals. However, it is very difficult to accurately calculate the non-covalent intermolecular interaction energies. In this paper, the local conformation and the intricate non-covalent interactions were effectively mapped and analyzed from the electron density (ρ) and its derivatives. The results show that the two components TNT and CL-20 are connected mainly by nitro–aromatic interactions, and nitro–nitro interactions. The steric interactions in TNT/CL-20 could not be confronted with the attractive interactions. Moreover, the scatter graph of TNT crystal reveals the reason why TNT is brittle. The detailed electrostatic potential analysis predicted that the detonation velocities (D) and impact sensitivity for the compounds both increase in the sequence of CL-20 > TNT/CL-20 co-crystal > TNT. Additionally, TNT/CL-20 co-crystal has better malleability than its pure components. This demonstrates the capacity and the feasibility of realizing explosive smart materials by co-crystallization, even if strong hydrogen bonding schemes are generally lacking in energetic materials.
Figure
Scatter graph (left) and gradient isosurface (right) of intermolecular interactions in TNT/CL-20 co-crystal  相似文献   

16.
Anaerobic bacteria have been used to produce 2,4-dihydroxylamino-nitrotoluene (2,4DHANT), a reductive metabolite of 2,4,6-trinitrotoluene (TNT). Here, an aerobic TNT biodegrader Pseudomonas sp. strain TM15 produced 2,4DHANT as evidenced by the molecular ion with m/z of 199 identified from LC-TOFMS analyses. TNT biodegradation with a high cell concentration (109 cells/ml) led to a significant accumulation of 2,4DHANT in the culture medium, as well as hydroxylamino-dinitrotoluenes (HADNTs), although these products were not accumulated when a low cell concentration was used; also, the accumulation of diamino-nitrotoluene and of an unidentified metabolite were observed in the culture medium with the high cell concentration (1010 cells/ml). 2,4DHANT overproduction was a function of the aeration speed since cultures with low aeration speeds (30 rpm) had a 19-fold higher DHANT productivity than those aerated with high speeds (180 rpm); this indicates that molecular oxygen was related to the formation of 2,4DHANT. The quantification of dissolved oxygen (DO) in the media demonstrated that the productivity of 2,4DHANT was increased at low DO values. Moreover, supplying oxygen to the culture media produced a remarkable decrease of 2,4DHANT accumulation; these results clearly indicate that high 2,4DHANT production was a consequence of the oxygen deficit in the culture medium. This finding is useful for understanding the TNT biodegradation (bioremediation technology) in an anoxic environment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Biodegradation of 2,4,6-trinitrotoluene (TNT) by the wood-rotting BasidiomycetePhanerochaete chrysosporium was studied in a fixed-film silicone membrane bioreactor and in agitated pellected cultures. The initial intermediate products of TNT biodegradation were shown to be 2-amino-4,6-dinitrotoluene (2amDNT) and 4-amino-2,6-dinitrotoluene (4amDNT). These intermediates were also degraded byP. chrysosporium. However, their rates of degradation were slow and appeared to represent rate-limiting steps in TNT degradation. The fact that 2amDNT and 4amDNT were further degraded is of importance. In most other microbial systems these compounds are typically not further degraded or are dimerized to even more persistent azo and azoxydimers. Similar to previous studies performed in stationary cultures, it was shown that substantial amounts of [14C]-TNT were degrade to [14C]-carbon dioxide in agitated pelleted cultures. Lignin peroxidase activity (assayed by veratryl alcohol oxidation) virtually disappeared upon addition of TNT to ligninolytic cultures ofP. chrysosporium. However, TNT, 2amDNT, and 4amDNT did not inhibit lignin peroxidase activity, nor were they substrates for this enzyme. Subsequent studies revealed that 4-hydroxylamino-2,6-dinitrotoluene, an intermediate in TNT reduction, was a potent lignin peroxidase inhibitor. Further studies revealed that this compound was also a substrate for lignin peroxidase H8.  相似文献   

18.
Soil and groundwater contaminated by munitions compounds is a crucial issue in environmental protection. Trinitrotoluene (TNT) is highly toxic and carcinogenic; therefore, the control and remediation of TNT contamination is a critical environmental issue. In this study, the authors characterized the indigenous microbial isolates from a TNT-contaminated site and evaluated their activity in TNT biodegradation. The bacteria Achromobacter sp. BC09 and Citrobacter sp. YC4 isolated from TNT-contaminated soil by enrichment culture with TNT as the sole carbon and nitrogen source (strain BC09) and as the sole nitrogen but not carbon source (strain YC4) were studied for their use in TNT bioremediation. The efficacy of degradation of TNT by indigenous microorganisms in contaminated soil without any modification was insufficient in the laboratory-scale pilot experiments. The addition of strains BC09 and YC4 to the contaminated soil did not significantly accelerate the degradation rate. However, the addition of an additional carbon source (e.g., 0.25% sucrose) could significantly increase the bioremediation efficiency (ca. decrease of 200 ppm for 10 days). Overall, the results suggested that biostimulation was more efficient as compared with bioaugmentation. Nevertheless, the combination of biostimulation and bioaugmentation using these indigenous isolates is still a feasible approach for the development of bioremediation of TNT pollution.  相似文献   

19.

Key message

Expression of the bacterial nitroreductase gene, nfsI, in tobacco plastids conferred the ability to detoxify TNT.

Abstract

The toxic pollutant 2,4,6-trinitrotoluene (TNT) is recalcitrant to degradation in the environment. Phytoremediation is a potentially low cost remediation technique that could be applied to soil contaminated with TNT; however, progress is hindered by the phytotoxicity of this compound. Previous studies have demonstrated that plants transformed with the bacterial nitroreductase gene, nfsI have increased ability to tolerate and detoxify TNT. It has been proposed that plants engineered to express nfsI could be used to remediate TNT on military ranges, but this could require steps to mitigate transgene flow to wild populations. To address this, we have developed nfsI transplastomic tobacco (Nicotiana tabacum L.) to reduce pollen-borne transgene flow. Here we have shown that when grown on solid or liquid media, the transplastomic tobacco expressing nfsI were significantly more tolerant to TNT, produced increased biomass and removed more TNT from the media than untransformed plants. Additionally, transplastomic plants expressing nfsI regenerated with high efficiency when grown on medium containing TNT, suggesting that nfsI and TNT could together be used to provide a selectable screen for plastid transformation.
  相似文献   

20.
2,4,6-Trinitrotoluene (15N or 13C labeled) was added to Norfolk Harbor sediments to test whether anaerobic bacteria use TNT for growth. Stable-isotope probing (SIP)-terminal restriction fragment length polymorphism (TRFLP) detected peaks in the [15N]TNT cultures (60, 163, and 168 bp). The 60-bp peak was also present in the [13C]TNT cultures and was related to Lysobacter taiwanensis.It has been estimated that there are over 1 million cubic yards of material contaminated with 2,4,6-trinitrotoluene (TNT) in the United States at concentrations as high as 600,000 to 700,00 mg/kg of material (9). Marine and estuarine sediments have also been impacted through the manufacturing, use, and/or disposal of TNT. Microbial biodegradation of these pollutants in situ is preferable due to the large volume of contaminated soils/sediments. However, it is unclear whether in situ bacteria can utilize TNT as a nitrogen or carbon source. Under aerobic conditions, TNT appears to be largely unavailable to bacteria but can be used by a variety of fungi as a carbon and nitrogen source (7). Under anaerobic conditions, only a few bacterial strains (Clostridium and Desulfovibrio strains and Pseudomonas sp. strain JLR11) have been reported to utilize TNT as a sole nitrogen source (6, 7). It is widely believed that nitroaromatic compounds cannot serve as growth substrates under anaerobic conditions in situ (11), and coamendment strategies are suggested for stimulating TNT transformation to 2,4,6-triaminotoluene (TAT) (1, 7, 18). Given these difficulties, there is no direct evidence that TNT can be biodegraded in situ and there is little proof that anaerobic bacteria can utilize TNT as a sole carbon or nitrogen source in organic-rich sediments. This study tested whether bacteria in Norfolk Harbor sediment are able to incorporate nitrogen (N) or carbon (C) from TNT into biomass under sulfidogenic conditions using stable-isotope probing (SIP). The findings indicate that bacteria assimilate 15N and 13C from TNT into their genomes during anaerobic incubations (2 to 35 days). Interestingly, one small-subunit (SSU) gene, related to Lysobacter taiwanensis, was observed in both the 15N and the 13C incubations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号