首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
甲醇作为一种来源广泛、价格低廉、还原度高的非粮原料有望成为下一代生物制造的关键原料。利用合成生物学技术构建能够高效利用甲醇的重组微生物以实现从甲醇到高值化学品的生物转化已成国内外研究热点,但由于甲醇代谢过程的特殊性及复杂性,目前人工设计的甲基营养菌还难以实现以甲醇为唯一碳源进行生长及产物合成。基于对天然甲基营养菌甲醇代谢过程的分析,从甲醇脱氢酶的筛选与改造、甲醛同化途径的重构与优化、甲醇到化学品的生物转化几个方面对合成型甲基营养菌的构建策略及面临的挑战进行总结与分析,以期为今后合成型甲基营养菌的人工设计和利用提供一定的借鉴。  相似文献   

2.
甲醇作为一种来源广泛、价格低廉、还原度高的非粮原料有望成为下一代生物制造的关键原料。利用合成生物学技术构建能够高效利用甲醇的重组微生物以实现从甲醇到高值化学品的生物转化已成国内外研究热点,但由于甲醇代谢过程的特殊性及复杂性,目前人工设计的甲基营养菌还难以实现以甲醇为唯一碳源进行生长及产物合成。基于对天然甲基营养菌甲醇代谢过程的分析,从甲醇脱氢酶的筛选与改造、甲醛同化途径的重构与优化、甲醇到化学品的生物转化几个方面对合成型甲基营养菌的构建策略及面临的挑战进行总结与分析,以期为今后合成型甲基营养菌的人工设计和利用提供一定的借鉴。  相似文献   

3.
从污水样品中筛选到能利用甲醇的菌株B,经16SrDNA测序分析鉴定为肺炎克氏杆菌(Klebsiella pneuumo-niae)。甲醛耐受能力的测试表明该菌对甲醛具有较强耐受能力,能在含有8~15mm。l/L甲醛的LB培养基上生长。S0uthem杂交分析说明这菌株的基因组中有甲基营养菌6-酸己酮糖合成酶(HPS)和6-磷酸果糖异构酶(PHI)基因的同源序列。本研究以pUC118为载体构建了基因组文库,进一步检测结果说明所构建的基因组文库质量符合要求。  相似文献   

4.
甲醛是一种毒性很高的一碳化合物,甲基营养菌是一类能在有高浓度甲醛的环境中生存的微生物,它们体内有多种降解甲醛的氧化途径和将甲醛转化为细胞组分的同化途径。丝氨酸途径和酮糖单磷酸途径是同时存在于甲基营养型细菌中的两种甲醛同化途径,木酮糖单磷酸途径是甲基营养型酵母菌中独有的甲醛同化途径。为了充分挖掘甲基营养型微生物在环境生物技术中的潜在应用价值,最近有很多研究尝试利用甲基营养微生物的细胞及其甲醛代谢途径关键酶开发甲醛污染检测方法和生物治理技术,对这方面的研究进展进行综述。  相似文献   

5.
从污水样品中筛选到能利用甲醇的菌株B,经16SrDNA测序分析鉴定为肺炎克氏杆菌(Klebsiella pneumo-niae)。甲醛耐受能力的测试表明该菌对甲醛具有较强耐受能力,能在含有8 ̄15mmol/L甲醛的LB培养基上生长。Southern杂交分析说明这菌株的基因组中有甲基营养菌6-磷酸己酮糖合成酶(HPS)和6-磷酸果糖异构酶(PHI)基因的同源序列。本研究以pUC118为载体构建了基因组文库,进一步检测结果说明所构建的基因组文库质量符合要求。  相似文献   

6.
目的:从甲基营养菌MP681中扩增甲醇脱氢酶(MDH)基因,在大肠杆菌中表达并检测其活性,同时在MP681中考察该基因对吡咯喹啉醌(PQQ)产生的影响。方法:根据MP681基因组序列设计引物,PCR扩增靶基因mdh,构建表达载体,考察活性,利用接合转移转化至MP681,考察PQQ的合成。结果:扩增得到甲基营养菌MP681甲醇脱氢酶基因,在大肠杆菌中的表达产物能够催化甲醇脱氢;将携带mdh基因的质粒转入MP681后,PQQ产量略有提高。结论:获得编码MDH的基因,该基因能够在大肠杆菌中表达,且表达产物具有生物活性;甲醇脱氢酶基因表达对宿主菌的PQQ合成可能有一定影响。  相似文献   

7.
微生物对甲醛的净化效应与作用机制   总被引:1,自引:0,他引:1  
甲醛是一种无色、强刺激性、危害人体嗅觉及免疫功能的有毒气体。目前工业的快速发展和室内装修的盛兴使得甲醛成为工业废气和室内空气污染的重要来源之一,也是当前威胁人类健康的主要杀手之一。开发高效净化甲醛的新技术是解决空气污染的重要途径。生物因能动态、持续地吸收利用甲醛,使得生物净化成为一种新兴、高效、绿色的甲醛污染防治技术。甲基营养菌等微生物可特异地吸收、同化甲醛等一碳化合物,逐渐成为生物净化甲醛的新宠。本文在分析甲醛的危害及其净化技术现状的基础上,从种群多样性、作用机理和应用等方面综述了微生物净化甲醛的研究进展。  相似文献   

8.
目的:考察培养基组分和发酵条件对甲基营养菌MP688合成胞外多糖的影响,确定最主要的影响因素。方法:将甲基营养菌MP688接种到基础培养基中,通过改变基础培养基的氮源、培养温度、初始pH值和培养时摇床转速等条件,检测在每种条件下培养5 d后发酵液中的多糖含量,确定每种因素的最适范围;进而选取8个因素,通过Plackett-Burman实验设计12组实验,通过检测每种组合条件下的多糖产量和结果统计分析,确定影响多糖合成的最主要因素。结果:甲基营养菌合成胞外多糖的最适氮源为硝酸钠,最适温度为30-37°C,最适pH值为6.5-7.0,最适摇床转速为200-250 r/min;甲醇、硝酸钠、初始pH值和接种量是MP688合成多糖的主要影响因子。结论:运用Plack-ett-Burman实验设计筛选到甲基营养菌MP688胞外多糖合成的主要影响因子,MP688是具有多糖生产潜力的菌株。  相似文献   

9.
八氢番茄红素脱氢酶( CrtI)催化八氢番茄红素经过4次脱氢合成番茄红素,或者经过3次脱氢合成链孢红素,在类胡萝卜素的生物合成中发挥重要的作用.以甲基营养菌Methylobacterium sp MB200为原始菌株,首先采用转座子突变技术构建部分突变体库共11552株,筛选得到33株颜色发生变化的目的突变体,随后利用分子克隆技术从目的突变体中获得crtI基因的完整ORF,长为1539 bp,编码512个氨基酸.与来自M.populi BJ001、M.chloromethanicum CM4和M.extorquens AM1的crtI一致性均为93%.将crtI与载体pCM80连接得到重组质粒pCM80-crtI,导入原始菌株中得到重组菌MB200/pCM80-crtI.测定原始菌株与重组菌株的CrtI酶活,结果发现,重组菌株CrtI的酶活与原始菌株相比约提高了40%.实验结果为完善甲基营养菌中类胡萝卜素的生物合成代谢途径提供了理论参考.  相似文献   

10.
目的:研究甲醇脱氢酶基因mpq1818在甲基营养菌MP688生长代谢中的作用。方法:利用同源重组原理构建中间为庆大霉素抗性基因Gmr、两侧mpq1818基因上下游序列同源的敲除载体pAK0-up-Gmr-down,接合转移导入MP688,通过庆大霉素抗性和组合PCR方法筛选基因敲除菌,并检测其生长、甲醇脱氢酶活性、甲醇利用及吡咯喹啉醌(PQQ)生物合成能力等方面的差异。结果:抗性和PCR验证显示mpq1818缺失株构建成功;与野生菌相比,缺失株的甲醇脱氢酶活力及利用甲醇的能力降低,而且菌株的生长和PQQ产量也有显著下降。结论:基因mpq1818的缺失影响菌株前期生长与PQQ合成。  相似文献   

11.
甲醇和甲烷等一碳原料来源广泛,价格低廉,是生物制造的理想原料。甲醇脱氢酶(Methanol dehydrogenase,MDH)催化甲醇生成甲醛是一碳代谢的关键反应。目前已从天然甲基营养菌中发现了多种利用不同辅因子,具有不同酶学性质的MDH。其中,烟酰胺腺嘌呤双核苷酸(NAD)依赖型MDH被广泛应用于构建人工甲基营养菌。但是,NAD依赖型MDH的甲醇氧化活性较低,对甲醇的亲和力较差,导致甲醇氧化成为人工甲基营养菌代谢甲醇的限速步骤。为了提高甲醇氧化速率,进而提高人工甲基营养菌的甲醇利用效率,近年来大量研究集中于MDH的挖掘与改造研究。文中系统综述了不同类型MDH的发现、表征、改造以及在人工甲基营养菌中的应用进展,详细阐述了MDH的定向进化和多酶复合体的构建,并展望了通过细胞生长偶联的蛋白质进化和蛋白质理性设计获得高活性MDH的潜在策略。  相似文献   

12.
Abundant natural gas reserves, along with increased biogas production, have prompted recent interest in harnessing methane as an industrial feedstock for the production of liquid fuels and chemicals. Methane can either be used directly for fermentation or first oxidized to methanol via biological or chemical means. Methanol is advantageous due to its liquid state under normal conditions. Methylotrophy, defined as the ability of microorganisms to utilize reduced one-carbon compounds like methane and methanol as sole carbon and energy sources for growth, is widespread in bacterial communities. However, native methylotrophs lack the extensive and well-characterized synthetic biology toolbox of platform microorganisms like Escherichia coli, which results in slow and inefficient design-build-test cycles. If a heterologous production pathway can be engineered, the slow growth and uptake rates of native methylotrophs generally limit their industrial potential. Therefore, much focus has been placed on engineering synthetic methylotrophs, or non-methylotrophic platform microorganisms, like E. coli, that have been engineered with synthetic methanol utilization pathways. These platform hosts allow for rapid design-build-test cycles and are well-suited for industrial application at the current time. In this review, recent progress made toward synthetic methylotrophy (including methanotrophy) is discussed. Specifically, the importance of amino acid metabolism and alternative one-carbon assimilation pathways are detailed. A recent study that has achieved methane bioconversion to liquid chemicals in a synthetic E. coli methanotroph is also briefly discussed. We also discuss strategies for the way forward in order to realize the industrial potential of synthetic methanotrophs and methylotrophs.  相似文献   

13.
Methanol oxidation was studied in several RuMP and serine type methylotrophic bacteria. On the basis of the distribution of the dissimilatory enzymes and the electrophoretic mobility of the methanol dehydrogenases, the methanol and methane oxidizers of the RuMP type belong to two different taxonomic groups. The pink pigmented facultative serine type methylotrophs represent another taxon.  相似文献   

14.
The synthesis of methanol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase by pink pigmented facultative methylotrophs (PPFM) has been studied during growth on C1 and multicarbon substrates. In batch cultures, the methanol dehydrogenase activities were higher during slow growth on non-C1-compounds than during fast growth on methanol. Derepression of this enzyme also occurred at slow growth in methanol-limited chemostat culture. Formaldehyde dehydrogenase and formate dehydrogenase remained largely repressed during growth on multicarbon substrates.  相似文献   

15.
16.
Methanol as a chemical feedstock is becoming increasingly important as it is derived from natural gas and is a feasible end‐product for captured carbon dioxide. Biological conversion of methanol through natural and synthetic methylotrophs increases the chemical repertoire and is an important direction for one carbon (C1) based chemical economy. Advances in the metabolic engineering and synthetic biology enable development of microbial cell factories for converting methanol into various platform chemicals. In this review, the current status of methanol utilizing microbial factory development is summarized. Also the development of synthetic methylotrophy and methanol‐augmented bioproductions is discussed.  相似文献   

17.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methylotrophs have proved successful, autonomous methylotrophy, i.e. the ability to utilize methane or methanol as sole carbon and energy substrates, has not yet been realized. Here, we address an important limitation of autonomous methylotrophy in E. coli: the inability of the organism to synthesize several amino acids when grown on methanol. By activating the stringent/stress response via ppGpp overproduction, or DksA and RpoS overexpression, we demonstrate improved biosynthesis of proteinogenic amino acids via endogenous upregulation of amino acid synthesis pathway genes. Thus, we were able to achieve biosynthesis of several limiting amino acids from methanol-derived carbon, in contrast to the control methylotrophic E. coli strain. This study addresses a key limitation currently preventing autonomous methylotrophy in E. coli and possibly other synthetic methylotrophs and provides insight as to how this limitation can be alleviated via stringent/stress response activation.  相似文献   

18.
The focus of this review is on the recent data from the omics approaches, measuring the presence of methylotrophs in natural environments. Both Bacteria and Archaea are considered. The data are discussed in the context of the current knowledge on the biochemistry of methylotrophy and the physiology of cultivated methylotrophs. One major issue discussed is the recent metagenomic data pointing toward the activity of “aerobic” methanotrophs, such as Methylobacter, in microoxic or hypoxic conditions. A related issue of the metabolic distinction between aerobic and “anaerobic” methylotrophy is addressed in the light of the genomic and metagenomic data for respective organisms. The role of communities, as opposed to single-organism activities in environmental cycling of single-carbon compounds, such as methane, is also discussed. In addition, the emerging issue of the role of non-traditional methylotrophs in global metabolism of single-carbon compounds and the role of methylotrophy pathways in non-methylotrophs is briefly mentioned.  相似文献   

19.
Abstract For a number of years we have tried to isolate versatile methylotrophic bacteria employing the ribulose monophosphate (RuMP) cycle of formaldehyde fixation. Recently this has resulted in the development of techniques for the selective enrichment and isolation in pure culture of Bacillus strains able to grow in methanol mineral medium over a temperature range between 35 and 60°C. At the optimum growth temperatures (50–55°C), these isolates display doubling times between 40 and 80 min. The metabolism of the strains studied is strictly respiratory. Methanol assimilation is exclusively via the RuMP cycle variants with the fructose bisphosphate (FBP) aldolase cleavage and transketolase (TK)/transaldolase (TA) rearrangement. Whole cells were unable to oxidize formate, and no activities of NAD-(in)dependent formaldehyde and formate dehydrogenases were detected. Formaldehyde oxidation most likely proceeds via the so-called dissimilatory RuMP cycle. The initial oxidation of methanol is catalyzed by an NAD-dependent methanol dehydrogenase present as an abundant protein in all strains. The enzyme from Bacillus sp. C1 has been purified and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号