首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
于2014年4月在广东封开黑石顶省级自然保护区,使用竖琴网采集到4只体形较小的雌性蝙蝠样本,其形态特征为无鼻叶结构,具漏斗状耳廓和披针形耳屏,前臂长32.30~34.11 mm,胫骨长16.47~17.72 mm;头骨较扁平,颅全长13.99~14.59 mm,脑颅高4.66~5.17 mm;齿式为2.1.3.3/3.1.3.3=38。经鉴定为泰坦尼亚彩蝠(Kerivoula titania),是广东省翼手目分布新纪录。首次报道了该种蝙蝠的回声定位声波特征,声波类型属于调频(FM)型,峰频(114.3±3.9)k Hz,带宽(117.8±12.3)k Hz,脉冲持续时间(1.7±0.3)ms,脉冲间隔时间(12.9±1.3)ms。标本现保存于广州大学生命科学学院。  相似文献   

2.
使用Petterson D500X超声波接收仪对华南菊头蝠Rhinolophus huananus飞行和静止状态的回声定位声波进行录制,利用独立样本t检验对2种状态的回声定位声波参数进行分析。结果显示,华南菊头蝠的回声定位声波类型为FM-CF-FM型,有1~2个谐波,不同状态下的峰频、声脉冲时间、声脉冲间隔时间差异均有统计学意义(P0.05)。与相似种大耳菊头蝠R.macrotis比较,二者在飞行状态下的回声定位声波峰频存在差异,可作为区分2个种之间的声学依据。  相似文献   

3.
叶根先  施利民  孙克萍  朱旭  冯江 《生态学报》2009,29(10):5330-5338
研究了同域分布的中华菊头蝠(Rhinolophus sinicus)与中菊头蝠(Rhinolophus affinis)的食性、形态、回声定位声波及捕食时间.中华菊头蝠与中菊头蝠均属于中等体型的菊头蝠,前臂长分别为(51.25±0.22) mm和(52.40±0.37) mm;悬挂状态下的回声定位声波均为典型的调频-恒频-调频(FM-CM-FM)型叫声,峰频分别为(82.07±0.17) kHz和(84.41±0.48) kHz.粪便分析显示中华菊头蝠与中菊头蝠分别捕食9目和7目昆虫,均以鳞翅目(Lepidiptera)和鞘翅目(Coleoptera)昆虫为主要食物(体积百分比总和> 90%),捕食鳞翅目昆虫的体积百分比差异显著,对猎物大小(以鞘翅目昆虫体长衡量)的选择无显著差异.中华菊头蝠与中菊头蝠的营养生态位宽度分别为2.38和2.28,重叠度达0.91,营养生态位未发生明显分化,但充足的食物资源促进了二者的共存.另外,2种菊头蝠的感官生态位和时间生态位未发生明显分化.由2种菊头蝠的翼载和峰频的差异推测二者发生了空间生态位和捕食微生境的分化,这也可能促进了二者的共存.  相似文献   

4.
回声定位声波地理差异及其形成原因是蝙蝠生态学研究领域一个基本而关键的问题,对于探索物种生存机制、物种形成及其保护具有重要科学意义。本研究从较大地理尺度上(9个地理种群)研究了菲菊头蝠(Rhinolophus pusillus)回声定位声波结构的地理差异,并进一步探讨了影响回声定位声波地理种群差异的因素。结果表明,菲菊头蝠雌性的体型较雄性略大,其主频较高。不同地理种群之间回声定位声波差异明显,包括脉冲持续时间、脉冲间隔、主频以及带宽在不同的地理种群之间均表现出一定程度的差异。进一步分析发现,不同地理种群之间的雌性菲菊头蝠前臂长和体重均与主频呈较弱的负相关,降雨量与雌性的主频呈较强的正相关;而不同地理种群之间的雄性前臂长、体重和降雨量与回声定位声波参数均无相关性;此外,地理距离、温度、湿度均与雌雄回声定位声波参数无相关性。本研究结果表明,菲菊头蝠不同地理种群间的回声定位声波出现明显差异,其中,体型和降雨量为主要影响因子,说明蝙蝠回声定位叫声的进化主要受到了当地生境的影响,表现出动物对不同生境的适应性进化。  相似文献   

5.
2012年8月在广东省南岭自然保护区采集到6只森林型蝙蝠(3♀,3♂),其鼻部呈管状,毛被厚密而柔软,后腿、翼膜和尾膜被覆有棕色绒毛。体型较大,雌雄之间有明显差异,前臂长♀48.94~52.67mm,♂44.00~46.92 mm;核型为2n=44,FN=52;超声波为调频型,主频率为78.3 kHz。经鉴定为蝙蝠科管鼻蝠亚科的毛翼管鼻蝠(Harpiocephalus harpia)。这一发现使该物种在中国大陆地区目前的分布区与栖息地得以进一步核实和确认,弥补了该珍稀蝙蝠物种的分布、行为和生态学资料。  相似文献   

6.
八种菊头蝠回声定位声波频率与体型的相关性   总被引:9,自引:0,他引:9  
菊头蝠回声定位声波中含有强的恒频(con-stant frequency,CF)组分,通常在开始和结尾伴有短的FM组分(Schnitzler,1968).飞行状态能影响回音信号(张树义等,1999).在飞行中,蝙蝠发出的频率变低以补偿由飞行速度引起的多谱勒变化,返回的回声接近于蝙蝠停止时的声波频率(Schnitzler,1968).回声定位声波的频率随蝙蝠年龄和季节的变化会产生一些变动,但如果频率被身体结构制约,CF组分频率在蝙蝠静止时会保持相对恒定(Vater,1987;Heller et al.,1989;Joneset al.1994).Francis et al.(1998)对19种菊头蝠、Heller et al.(1989)对26种菊头蝠进行了体型测量和回声定位声波信号的测定,得出结论为:菊头蝠回声定位声波中CF组分的频率与体型大小成负相关.但Jones(1992)和Jones et al.(1993)认为体型大小对菊头蝠回声定位声波没有影响.  相似文献   

7.
2009年9月在广东省南岭采集到5只森林型蝙蝠,其鼻孔突出成短管状,背部毛棕褐色,前臂长34.3~36.8mm;核型为2n=44,FN=50.经鉴定为蝙蝠科管鼻蝠亚科的中管鼻蝠(Murina huttonii),为广东省翼手类分布新纪录.用蝙蝠超声波接收器(Anabat Ⅱ)录制并分析其回声定位声波,为FM型.中管鼻蝠...  相似文献   

8.
三种共栖蝙蝠的回声定位信号特征及其夏季食性的比较   总被引:3,自引:2,他引:1  
2005年6至9月,对桂林市郊区两个山洞中高颅鼠耳蝠(Myotissiligorensis)、菲菊头蝠(Rhinolo-phuspusillus)和黑髯墓蝠(Taphozousmelanopogon)的回声定位叫声特征和食性进行分析,并结合其形态特征与野外观察,推断其捕食生境和捕食策略。研究结果发现:黑髯墓蝠体型最大,声音特征属短调频型多谐波,一般为4个谐波,能量主要集中在第二谐波上,主频率为(32·84±1·17)kHz,选择鞘翅目和双翅目昆虫为主要食物;高颅鼠耳蝠(长调频型)和菲菊头蝠(长恒频-调频型),体型都较小,主频率分别是(84·44±8·13)kHz和(110·78±1·65)kHz,以双翅目昆虫为主要食物;而菲菊头蝠则以鞘翅目和双翅目昆虫为主要食物。上述结果证明,高颅鼠耳蝠、菲菊头蝠和黑髯墓蝠在声音和食物组成等方面出现了明显分化。  相似文献   

9.
2013年7月在广东南岭国家级自然保护区阳山县境内(24°48′39.5′′N,112°51′01.3′′E,海拔155 m)捕捉到4只雄性蝙蝠,体型小,前臂长34.1~34.7 mm,颅全长14.3~14.7 mm;体毛浓密,背毛毛基黑色,毛尖灰色,腹毛黑或棕色,毛尖奶油白,靠近肛门处腹毛浅灰色,些许白色;翼膜附着于跖部末端;后足特别延展,长度超过胫骨长之半;鉴定为长指鼠耳蝠[Myotis longipes(Dobson1873)]。同时,基于Cyt b基因序列(1 140 bp)构建的部分鼠耳蝠物种系统进化关系,进一步确认上述标本为长指鼠耳蝠,为广东省翼手目新纪录。该种蝙蝠在我国贵州、广西、重庆有分布记载,但标本和相关资料很少。本文给出了长指鼠耳蝠的外形和头骨特征测量数据,并与印度的标本进行了对比。长指鼠耳蝠的回声定位声波为调频型(FM),主频率为68.2 k Hz;此外,对其分类地位和分布状况进行了讨论。标本保存于广东省生物资源应用研究所。  相似文献   

10.
在自建网室(9 m×4 m×4 m)内驯养马铁菊头蝠(Rhinolophus ferrumequinum),利用超声波探测仪录制蝙蝠不同状态下回声定位声波,声波录制与红外摄像保持同步。结果表明,马铁菊头蝠回声定位声波为调频(FM)/恒频(CF)/调频(FM)型;在蝙蝠接近猎物过程中,声脉冲持续时间和间隔时间显著变短,下调FM(即tFM)组分变得愈为显著,捕捉猎物瞬间,产生捕食蜂鸣;飞行与悬挂状态相比,声脉冲重复率、主频率、声脉冲时间、声脉冲间隔和能率环的差异均达到显著水平。  相似文献   

11.
1. The development of vocalization and hearing was studied in Sri Lankan horseshoe bats (Rhinolophus rouxi) during the first postnatal month. The young bats were caught in a nursing colony of rhinolophids in which birth took place within a two week period. 2. The new-born bats emitted isolation calls through the mouth. At the beginning these calls consisted of pure tones with frequencies below 10 kHz (Fig. 1). During the first postnatal week the call frequency increased to about 15 kHz, and the fundamental was augmented by two to four harmonics. No evoked potentials to pure tone stimuli could be elicited in the inferior colliculus of this age group, i.e., auditory processing at the midbrain level was not demonstrable. 3. Evoked potentials were first recorded in the second week, broadly tuned to 15-45 kHz, with a maximum sensitivity between 15-25 kHz. In the course of the second week, however, higher frequencies up to 60 kHz became progressively incorporated into the audiogram (Fig. 3). The fundamental frequency of the multiharmonic isolation calls, emitted strictly through the mouth, increased to about 20 kHz. 4. In the bats' third postnatal week an increased hearing sensitivity (auditory filter) emerged, sharply tuned at frequencies between 57 and 60 kHz (Fig. 4e). The same individuals were also the first to emit long constant frequency echolocation calls through the nostrils (Fig. 4c). The energy of the calls was arranged in harmonic frequency bands with the second harmonic exactly tuned to the auditory filter. These young bats continued to emit isolation calls through the mouth, which were, however, not harmonically related to the echolocation calls (Fig. 4b, d). 5. During the fourth week, both the auditory filter and the matched echolocation pulses (the second harmonic) shifted towards higher frequencies (Fig. 5). During the fifth week the fundamental frequency of the calls was progressively attenuated, and both the second harmonic of the pulses and the auditory filter reached the frequency range typical for adult bats of 73-78 kHz (Fig. 6). 6. The development of audition and vocalization is discussed with regard to possible interactions of both subsystems, and their incorporation into the active orientation system of echolocation.  相似文献   

12.
皮氏菊头蝠回声定位声波与年龄的关系   总被引:2,自引:0,他引:2  
皮氏菊头蝠 (Rhinolophuspearsoni)雌性成体 5只和幼体 2只采自贵州省贞丰县珉谷镇。采用超声波探测仪 (D980 ,ULTRASOUNDDETECTOR)接收皮氏菊头蝠的回声定位声波 ,转换到原频率的 1 / 1 0后导入计算机 ,然后用专业声谱分析软件 (Batsound 3 1 0 )进行分析。成蝠在飞行和悬挂状态下的声波结构相似 ,只是声波各项参数值略有不同 :它们发射FM CF FM型声波 ,具有 2~ 3个谐波 ,主频率在飞行时为 5 6 80± 0 6 2kHz ,悬挂时为 5 8 0 5± 0 2 4kHz ;声脉冲时间和间隔在飞行时分别为 3 4 6 2± 5 2 9ms和 86 5 0± 1 9 72ms ,悬挂时分别为 4 1 0 8± 5 87ms和 1 1 7 2 9± 6 6 4 4ms ;能率环飞行时为 ( 4 4 0 6± 1 2 5 8) % ,悬挂时为 ( 4 6 0 0±2 4 2 5 ) %。幼蝠声波为CF FM型 ,谐波数为 5~ 8个 ,主频率明显低于成体 ,FM带宽窄于成体 ,声脉冲时间和间隔短于成体 ,能率环低于成体。皮氏菊头蝠回声定位声波与年龄有关 ,这可能因成体的声波主要是探测食物和周围环境的详细信息 ,而幼体主要是与母蝠进行交流。  相似文献   

13.
Auditory feedback from the animal''s own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.  相似文献   

14.
1.  Most studies examining interactions between insectivorous bats and tympanate prey use the echolocation calls of aerially-feeding bats in their analyses. We examined the auditory responses of noctuid (Eurois astricta) and notodontid (Pheosia rimosa) moth to the echolocation call characteristics of a gleaning insectivorous bat, Myotis evotis.
2.  While gleaning, M. Evotis used short duration (mean ± SD = 0.66 ± 0.28 ms, Table 2), high frequency, FM calls (FM sweep = 80 – 37 kHz) of relatively low intensity (77.3 + 2.9, –4.2 dB SPL). Call peak frequency was 52.2 kHz with most of the energy above 50 kHz (Fig. 1).
3.  Echolocation was not required for prey detection or capture as calls were emitted during only 50% of hovers and 59% of attacks. When echolocation was used, bats ceased calling 324.7 (±200.4) ms before attacking (Fig. 2), probably using prey-generated sounds to locate fluttering moths. Mean call repetition rate during gleaning attacks was 21.7 (±15.5) calls/s and feeding buzzes were never recorded.
4.  Eurois astricta and P. rimosa are typical of most tympanate moths having ears with BFs between 20 and 40 kHz (Fig. 3); apparently tuned to the echolocation calls of aerially-feeding bats. The ears of both species respond poorly to the high frequency, short duration, faint stimuli representing the echolocation calls of gleaning M. evotis (Figs. 4–6).
5.  Our results demonstrate that tympanate moths, and potentially other nocturnal insects, are unable to detect the echolocation calls typical of gleaning bats and thus are particularly susceptible to predation.
  相似文献   

15.
Summary This report describes the ontogenesis of tonotopy in the inferior colliculus (IC) of the rufous horseshoe bat (Rhinolophus rouxi). Horseshoe bats are deaf at birth, but consistent tonotopy with a low-to-high frequency gradient from dorsolateral to ventromedial develops from the 2nd up to the 5th week. The representation of the auditory fovea is established in ventro-mediocaudal parts of the IC during the 3rd postnatal week (Fig. 3). Then, a narrow frequency band 5 kHz in width, comprising 16% of the bat's auditory range, captures 50–60 vol% of the IC (Fig. 3c). However, foveal tuning is 10–12 kHz (1/3 octave) lower than in adults; foveal tuning in females (65–68 kHz) is 2–3 kHz higher than in males (62–65 kHz). Thereafter, foveal tuning increases by 1–1.5 kHz per day up to the 5th postnatal week, when the adult hearing range is established (Figs. 4, 5). The increase of sensitivity and of tuning sharpness of single units also follows a low-to-high frequency gradient (Fig. 6).Throughout this development the foveal tuning matches the second harmonic of the echolocation pulses vocalised by these young bats. The results confirm the hypothesis of developmental shifts in the frequency-place code for the foveal high frequency representation in the IC.Abbreviations BF best frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - IHC inner hair cell; - OHC outer hair cell - RR Rhinolophus rouxi  相似文献   

16.
ABSTRACT

We recorded echolocation and ultrasonic social signals of the bat Myotis septentrionalis. The bats foraged for insects resting on or fluttering about an outdoor screen to which they were attracted by a ‘backlight’. The bats used nearly linearly modulated echolocation signals of high frequency (117 to 49 kHz, see Tables) with a weak second harmonic. The orientational signals from patrolling bats were about 2.4 ms in duration and occurred at a repetition rate of about 18 Hz (see Figure 3). The signals used by bats as they approached the screen were of shorter duration (0.72 ms) and occurred at higher rates (33.8 Hz) (Table 2 and Figure 4). We registered one feeding ‘buzz’ (Figure 5). We recorded social signals when two bats patrolled the hunting area. The social signals were characterized by their longer durations (6 ms, see Table 1), lower frequencies (70 to 30 kHz), and curvilinear sweeps (Figures 7 and 8). We calculated the source levels of orientational and social signals using the differences in arrival times at three microphones in a linear array (Figures 1 and 2). The source levels were on average 102 dB peSPL at 10 cm (Table 1). We could not calculate source levels of the signals used by bats as they approached the screen at close range, but these signals were much weaker (about 65 dB peSPL at the microphone).  相似文献   

17.
贵州省发现侏伏翼   总被引:1,自引:1,他引:0  
2010年6月在贵州省三都县进行翼手目动物标本采集,于水龙乡采集到1只雄性伏翼,经鉴定为侏伏翼(Pipistrellus tenuis).主要鉴别特征:体型甚小,前臂长30.64mm;颅全长12.04mm.耳较大,顶端钝圆;耳屏不足耳长的1/2.第1上门齿有2个齿尖.第1上前臼齿与犬齿基部充分接触,并稍位于齿列内侧.下...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号