首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.

Background

Tetracycline exerts neuroprotection via suppressing the local inflammation induced by cerebral ischemia. However, the underlying mechanism is not completely clear.

Methodology/Principal Findings

The mRNA and protein expressions of tumor necrosis factor α and interleukin 6 and the number of activated microglia were measured to detect the inflammatory process in the ischemic hemisphere. The key proteins of nuclear factor kappa B pathway and the binding activity of nuclear factor kappa B were also measured. Two key components of autophagy, Beclin 1 and LC3, were detected by western blotting. Pretreatment with tetracycline inhibited the mRNA and protein expressions of tumor necrosis factor α and interleukin 6 and decreased the numbers of activated and phagocytotic microglia. Tetracycline down regulated the total and phosphorylated expressions of IKK, IκB and p65 (P<0.05). The autophagy inhibitor, 3-methyladenine, inhibited inflammation and activation of nuclear factor kappa B pathway. The levels of Beclin 1 and LC3 were decreased by 3-methyladenine and tetracycline.

Conclusions/Significance

Our data suggested that pretreatment of tetracycline may inhibit autophagy in the ischemic stroke brain and then suppress the inflammatory process via inhibiting the activation of nuclear factor kappa B pathway.  相似文献   

2.

Objectives

Vasculature damage is an important contributor to the side-effects of radiotherapy. The aim of this study is to provide insights into the radiobiology of the autophagic response of endothelial cells.

Methods and Materials

Human umbilical vascular endothelial cells (HUVEC) were exposed to 2 Gy of ionizing radiation (IR) and studied using confocal microscopy and western blot analysis, at 4 and 8 days post-irradiation. The role of autophagy flux in HUVEC radio-sensitivity was also examined.

Results

IR-induced accumulation of LC3A+, LC3B+ and p62 cytoplasmic vacuoles, while in double immunostaining with lysosomal markers (LAMP2a and CathepsinD) repression of the autophagolysosomal flux was evident. Autophagy-related proteins (ATF4, HIF1α., HIF2α, Beclin1) were, however, induced excluding an eventual repressive effect of radiation on autophagy initiating protein expression. Exposure of HUVEC to SMER28, an mTOR-independent inducer of autophagy, enhanced proLC3 and LC3A, B-I protein expression and accelerated the autophagic flux. Pre-treatment of HUVEC with SMER28 protected against the blockage of autophagic flux induced by IR and conferred radio-resistance. Suppression of LC3A/LC3B proteins with siRNAs resulted in radio-sensitization.

Conclusions

The current data provide a rationale for the development of novel radioprotection policies targeting the autophagic pathway.  相似文献   

3.

Background and Purpose

Accumulating evidences have demonstrated that nuclear factor κB/p65 plays a protective role in the protection of ischemic preconditioning and detrimental role in lethal ischemia-induced programmed cell death including apoptosis and autophagic death. However, its role in the protection of ischemic postconditioning is still unclear.

Methods

Rat MCAO model was used to produce transient focal ischemia. The procedure of ischemic postconditioning consisted of three cycles of 30 seconds reperfusion/reocclusion of MCA. The volume of cerebral infarction was measured by TTC staining and neuronal apoptosis was detected by TUNEL staining. Western blotting was used to analyze the changes in protein levels of Caspase-3, NF-κB/p65, phosphor- NF-κB/p65, IκBα, phosphor- IκBα, Noxa, Bim and Bax between rats treated with and without ischemic postconditioning. Laser scanning confocal microscopy was used to examine the distribution of NF-κB/p65 and Noxa.

Results

Ischemic postconditioning made transient focal ischemia-induced infarct volume decrease obviously from 38.6%±5.8% to 23.5%±4.3%, and apoptosis rate reduce significantly from 46.5%±6.2 to 29.6%±5.3% at reperfusion 24 h following 2 h focal cerebral ischemia. Western blotting analysis showed that ischemic postconditioning suppressed markedly the reduction of NF-κB/p65 in cytoplasm, but elevated its content in nucleus either at reperfusion 6 h or 24 h. Moreover, the decrease of IκBα and the increase of phosphorylated IκBα and phosphorylated NF-κB/p65 at indicated reperfusion time were reversed by ischemic postconditioning. Correspondingly, proapoptotic proteins Caspase-3, cleaved Caspase-3, Noxa, Bim and Bax were all mitigated significantly by ischemic postconditioning. Confocal microscopy revealed that ischemic postconditioning not only attenuated ischemia-induced translocation of NF-κB/p65 from neuronal cytoplasm to nucleus, but also inhibited the abnormal expression of proapoptotic protein Noxa within neurons.

Conclusions

We demonstrated in this study that the protection of ischemic postconditioning on neuronal apoptosis caused by transient focal ischemia is associated with attenuation of the activation of NF-κB/p65 in neurons.  相似文献   

4.

Background

Hepatic ischemia–reperfusion injury (HIRI) remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC) has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS) and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved.

Methods

A mouse model of segmental (70%) hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg), a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM).

Results

We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice.

Conclusion

NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2.  相似文献   

5.

Background

Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion.

Methodology/Principal Findings

We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8+ cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model.

Conclusion/Significance

CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.  相似文献   

6.

Background

Stroke is one of the leading causes of neuronal death. Sesamin is known for neuroprotection by its antioxidant and anti-inflammatory properties but it lacks blood–brain barrier (BBB) activity. A panel of sesamin derivatives was screened and 3-bis (3-methoxybenzyl) butane-1,4-diol (BBD) was selected for high BBB activity and tested for its neuroprotective effect.

Methods

The focal cerebral ischemia of Sprague–Dawley rats and hypoxia models of murine BV-2 microglia or PC12 cells under oxygen/glucose deprivation were used for in vivo and in vitro test, respectively. Lipid peroxidation and superoxide dismutase (SOD) activity from the ischemic brain were tested and reactive oxygen species (ROS), cytokine production, prostaglandin (PGE2) and related signaling pathways from hypoxic cells were examined by ELISA or Western blot assay, respectively.

Results

BBD showed a protective effect when given 90 min after the focal cerebral ischemia. It also reduced lipid peroxidation and preserved SOD activity from the ischemic brain. The mechanism of BBD was further confirmed by attenuating ROS, cytokine production, and PGE2 release from hypoxic BV-2 or PC12 cells. BBD significantly reduced hypoxia-induced c-Jun N-terminal kinases (JNK) and modulated AKT-1 and caspase-3 (survival and apoptotic pathways) in BV-2 cells, and inhibited hypoxia-induced JNK and cyclooxygenase-2 activation in PC12 cells.

Conclusions

The neuroprotective effect of BBD on ischemia/hypoxia models was involved with antioxidant and anti-inflammatory effects. The result would help the development of new CNS drug for protection of ischemia/hypoxia injury.  相似文献   

7.
《Autophagy》2013,9(4):482-494
Several recent studies have showed that autophagy is involved in ischemic brain damage, but it may also play a pro-survival role in ischemic preconditioning. This study was taken to determine the role of autophagy in an animal model of cerebral ischemic preconditioning (IPC). Focal cerebral IPC was produced in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The rats were pretreated with intracerebral ventricle infusion of the autophagy inhibitors 3-methyladenine (3-MA) and bafliomycin A1 (Baf A1) or the autophagy inducer rapamycin to evaluate the contribution of autophagy to IPC-induced neuroprotection. The results from electron microscopic examinations and immunofluorescence showed that both IPC and PFI induced autophagy activation, but the extent and persistence of autophagy activation were varied. IPC treatment significantly reduced infarct volume, brain edema and motor deficits after subsequent PFI, whereas 3-MA and Baf A1 suppressed the neuroprotection induced by IPC. 3-MA pretreatment also significantly attenuated upregulation of LC3-II, beclin 1 and HSP70 and downregulation of p62. To further determine if autophagy induction is responsible for IPC-induced neuroprotection, rats were treated with rapamycin 24 h before the onset of PFI. The results showed that rapamycin reduced infarct volume, brain edema and motor deficits induced by PFI. Rapamycin pretreatment also increased the protein levels of LC3-II and beclin 1. These results demonstrate that autophagy activation during IPC offers a remarkable tolerance to a subsequent fatal ischemic insult, and IPC's neuroprotective effects can be mimicked by autophagy inducers.  相似文献   

8.

Background

A high-calorie (HC) diet induces renal injury and promotes aging, and calorie restriction (CR) may ameliorate these responses. However, the effects of long-term HC and CR on renal damage and aging have been not fully determined. Autophagy plays a crucial role in removing protein aggregates and damaged organelles to maintain intracellular homeostasis and function. The role of autophagy in HC-induced renal damage is unknown.

Methods

We evaluated the expression of LC3/Atg8 as a marker of the autophagosome; p62/SQSTM1; polyubiquitin aggregates as markers of autophagy flux; Ambra1, PINK1, Parkin and Bnip3 as markers of mitophagy; 8-hydroxydeoxyguanosine (8-OHdG) as a marker of DNA oxidative damage; and p16 as a marker of organ aging by western blot and immunohistochemical staining in the kidneys of 24-month-old Fischer 344 rats. We also observed mitochondrial structure and autolysosomes by transmission electron microscopy.

Results

Expression of the autophagosome formation marker LC3/Atg8 and markers of mitochondrial autophagy (mitophagy) were markedly decreased in the kidneys of the HC group, and markedly increased in CR kidneys. p62/SQSTM1 and polyubiquitin aggregates increased in HC kidneys, and decreased in CR kidneys. Transmission electron microscopy demonstrated that HC kidneys showed severe abnormal mitochondrial morphology with fewer autolysosomes, while CR kidneys exhibited normal mitochondrial morphology with numerous autolysosomes. The level of 8-hydroxydeoxyguanosine was increased in HC kidneys and decreased in CR kidneys. Markers of aging, such as p16 and senescence-associated-galactosidase, were increased significantly in the HC group and decreased significantly in the CR group.

Conclusion

The study firstly suggests that HC diet inhibits renal autophagy and aggravates renal oxidative damage and aging, while CR enhances renal autophagy and ameliorates oxidative damage and aging in the kidneys.  相似文献   

9.

Purpose

We examined whether resistance exercise training restores impaired autophagy functions caused by Chloroquine (CQ)-induced Sporadic Inclusion Body Myositis (sIBM) in rat skeletal muscle.

Methods

Male wistar rats were randomly assigned into three groups: Sham (n = 6), CQ (n = 6), and CQ + Exercise (CE, n = 6). To create a rat model of sIBM, rats in the CQ and CE group were intraperitoneally injected with CQ 5 days a week for 16 weeks. Rats in the CE group performed resistance exercise training 3 times a week for 8 weeks in conjunction with CQ starting from week 9 to week 16. During the training period, maximal carrying load, body weight, muscle weight, and relative muscle weight were measured. Autophagy responses were examined by measuring specific markers.

Results

While maximal carrying capacity for resistance exercise training was dramatically increased in the CE group, no significant changes occurred in the skeletal muscle weight as well as in the relative muscle weight of CE compared to the other groups. CQ treatment caused significant increases in the levels of Beclin-1 and p62, and decreases in the levels of LAMP-2 proteins. Interestingly, no significant differences in the LC3-II/I ratio or the LC3-II protein levels were observed. Although CQ-treatment groups suppressed the levels of the potent autophagy inducer, BNIP3, p62 levels were decreased in only the CE group.

Conclusion

Our findings demonstrate that sIBM induced by CQ treatment results in muscle degeneration via impaired autophagy and that resistance exercise training improves movable loading activity. Finally, regular exercise training may provide protection against sIBM by enhancing the autophagy flux through p62 protein.  相似文献   

10.

Background

Some patients treated with chloroquine, hydroxychloroquine, or colchicine develop autophagic vacuolar myopathy, the diagnosis of which currently requires electron microscopy. The goal of the current study was to develop an immunohistochemical diagnostic marker for this pathologic entity.

Methodology

Microtubule-associated protein light chain 3 (LC3) has emerged as a robust marker of autophagosomes. LC3 binds p62/SQSTM1, an adapter protein that is selectively degraded via autophagy. In this study, we evaluated the utility of immunohistochemical stains for LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar myopathy. The staining was performed on archival muscle biopsy material, with subject assignment to normal control, drug-treated control, and autophagic myopathy groups based on history of drug use and morphologic criteria.

Principal Findings

In all drug-treated subjects, but not in normal controls, LC3 and p62 showed punctate staining characteristic of autophagosome buildup. In the autophagic myopathy subjects, puncta were coarser and tended to coalesce into linear structures aligned with the longitudinal axis of the fiber, often in the vicinity of vacuoles. The percentage of LC3- and p62-positive fibers was significantly higher in the autophagic myopathy group compared to either the normal control (p<0.001) or the drug-treated control group (p<0.05). With the diagnostic threshold set between 8% and 15% positive fibers (depending on the desired level of sensitivity and specificity), immunohistochemical staining for either LC3 or p62 could be used to identify subjects with autophagic vacuolar myopathy within the drug-treated subject group (p≤0.001).

Significance

Immunohistochemistry for LC3 and p62 can facilitate tissue-based diagnosis of drug-induced autophagic vacuolar myopathies. By limiting the need for electron microscopy (a time consuming and costly technique with high specificity, but low sensitivity), clinical use of these markers will improve the speed and accuracy of diagnosis, resulting in significantly improved clinical care.  相似文献   

11.

Background

Recent animal study and clinical trial data suggested that remote limb ischemic postconditioning (RIPostC) can invoke potent cardioprotection. However, during ischemia reperfusion injury (IR), the effect and mechanism of RIPostC on myocardium in subjects with or without diabetes mellitus (DM) are poorly understood. Autophagy plays a crucial role in alleviating myocardial IR injury. The aim of this study was to determine the effect of RIPostC on mice myocardial IR injury model with or without DM, and investigate the role of autophagy in this process.

Methodology and Results

Streptozocin (STZ) induced DM mice model and myocardial IR model were established. Using a noninvasive technique, RIPostC was induced in normal mice (ND) and DM mice by three cycles of ischemia (5 min) and reperfusion (5 min) in the left hindlimb. In ND group, RIPostC significantly reduced infarct size (32.6±3.0% in ND-RIPostC vs. 50.6±2.4% in ND-IR, p<0.05) and improved cardiac ejection fraction (49.70±3.46% in ND-RIPostC vs. 31.30±3.95% in ND-IR, p<0.05). However, in DM group, no RIPostC mediated cardioprotetion effect was observed. To analyze the role of autophagy, western blot and immunohistochemistry was performed. Our data showed that a decreased sequestosome 1 (SQSTM1/p62) level, an increased Beclin-1 level, and higher ratio of LC3-II/LC3-I were observed in ND RIPostC group, but not DM RIPostC group.

Conclusions

The current study suggested that RIPostC exerts cardioprotection effect on IR in normal mice, but not DM mice, and this difference is via, at least in part, the up-regulation of autophagy.  相似文献   

12.

Background

Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats.

Methods and Results

Rats underwent 2 h of middle cerebral artery occlusion (MCAo). DHA, neuroprotectin D1 (NPD1) or vehicle (saline) was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle.

Conclusions

We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.  相似文献   

13.

Background

Beclin 1 and Beclin 2 are autophagy-related proteins that show similar amino acid sequences and domain structures. Beclin 1 established the first connection between autophagy and cancer. However, the role of Beclin 2 in cancer is unclear. The aims of this study were to analyze Beclin 1 and Beclin 2 expressions in oral cancer tissues and in cell lines, and to evaluate their possible roles in cancer progression.

Methods

We investigated Beclin 1 and Beclin 2 expressions by immunohistochemistry in 195 cases of oral cancer. The prognostic roles of Beclin 1 and Beclin 2 were analyzed statistically. In vitro, overexpression and knockdown of Beclin proteins were performed on an oral cancer cell line, SAS. The immunofluorescence and autophagy flux assays confirmed that Beclin proteins were involved in autophagy. The impacts of Beclin 1 and Beclin 2 on autophagy and tumor growth were evaluated by conversion of LC3-I to LC3-II and by clonogenic assays, respectively.

Results

Oral cancer tissues exhibited aberrant expressions of Beclin 1 and Beclin 2. The cytoplasmic Beclin 1 and Beclin 2 expressions were unrelated in oral cancer tissues. In survival analyses, high cytoplasmic Beclin 1 expression was associated with low disease specific survival, and negative nuclear Beclin 1 expression was associated with high recurrent free survival. Patients with either high or low cytoplasmic Beclin 2 expression had significantly lower overall survival and disease specific survival rates than those with moderate expression. In oral cancer cells, overexpression of either Beclin 1 or Beclin 2 led to autophagy activation and increased clonogenic survival; knockdown of Beclin 2 impaired autophagy and increased clonogenic survival.

Conclusions

Our results indicated that distinct patterns of Beclin 1 and Beclin 2 were associated with aggressive clinical outcomes. Beclin 1 overexpression, as well as Beclin 2 overexpression and depletion, contributed to tumor growth. These findings suggest Beclin proteins are associated with tumorigenesis.  相似文献   

14.

Background and Purpose

Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia.

Methods

Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis.

Results

Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period.

Conclusions

Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by the upregulation of the Cyclophilin D protein, the destruction of the mitochondrial membrane potential and the generation of excessive reactive oxidative species.  相似文献   

15.
Sheng R  Liu XQ  Zhang LS  Gao B  Han R  Wu YQ  Zhang XY  Qin ZH 《Autophagy》2012,8(3):310-325
Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.  相似文献   

16.

Objectives

δ-opioid receptor (DOR) activation reduced brain ischemic infarction and attenuated neurological deficits, while DOR inhibition aggravated the ischemic damage. The underlying mechanisms are, however, not well understood yet. In this work, we asked if DOR activation protects the brain against ischemic injury through a brain-derived neurotrophic factor (BDNF) -TrkB pathway.

Methods

We exposed adult male Sprague-Dawley rats to focal cerebral ischemia, which was induced by middle cerebral artery occlusion (MCAO). DOR agonist TAN-67 (60 nmol), antagonist Naltrindole (100 nmol) or artificial cerebral spinal fluid was injected into the lateral cerebroventricle 30 min before MCAO. Besides the detection of ischemic injury, the expression of BDNF, full-length and truncated TrkB, total CREB, p-CREB, p-ATF and CD11b was detected by Western blot and fluorescence immunostaining.

Results

DOR activation with TAN-67 significantly reduced the ischemic volume and largely reversed the decrease in full-length TrkB protein expression in the ischemic cortex and striatum without any appreciable change in cerebral blood flow, while the DOR antagonist Naltrindole aggregated the ischemic injury. However, the level of BDNF remained unchanged in the cortex, striatum and hippocampus at 24 hours after MCAO and did not change in response to DOR activation or inhibition. MCAO decreased both total CREB and pCREB in the striatum, but not in the cortex, while DOR inhibition promoted a further decrease in total and phosphorylated CREB in the striatum and decreased pATF-1 expression in the cortex. In addition, MCAO increased C11b expression in the cortex, striatum and hippocampus, and DOR activation specifically attenuated the ischemic increase in the cortex but not in the striatum and hippocampus.

Conclusions

DOR activation rescues TrkB signaling by reversing ischemia/reperfusion induced decrease in the full-length TrkB receptor and reduces brain injury in ischemia/reperfusion  相似文献   

17.
18.
《Autophagy》2013,9(6):738-753
The present study evaluated autophagy activation in astrocytes and its contribution to astrocyte injury induced by cerebral ischemia and hypoxia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. In vitro hypoxia in cultured primary astrocytes was induced by the oxygen-glucose deprivation (OGD). Alterations of astrocytes were evaluated with astroglia markers glial fibrillary acidic protein (GFAP). The formation of autophagosomes in astrocytes was examined with transmission electron microscopy (TEM). The expression of autophagy-related proteins were examined with immunoblotting. The role of autophagy in OGD or focal cerebral ischemia-induced death of astrocytes was assessed by pharmacological inhibition of autophagy with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). The results showed that GFAP staining was reduced in the infarct brain areas 3-12 h following pMCAO. Cerebral ischemia or OGD induced activation of autophagy in astrocytes as evidenced by the increased formation of autophagosomes and autolysosomes and monodansylcadaverine (MDC)-labeled vesicles; the increased production of microtubule-associated protein 1 light chain 3 (LC3-II); the upregulation of Beclin 1, lysosome-associated membrane protein 2 (LAMP2) and lysosomal cathepsin B expression; and the decreased levels of cytoprotective Bcl-2 protein in primary astrocytes. 3-MA inhibited OGD-induced the increase in LC3-II and the decline in Bcl-2. Furthermore, 3-MA and Baf slightly but significantly attenuated OGD-induced death of astrocytes. 3-MA also significantly increased the number of GFAP-positive cells and the protein levels of GFAP in the ischemic cortex core 12 h following pMCAO. These results suggest that ischemia or hypoxia-induced autophagic/lysosomal pathway activation may at least partly contribute to ischemic injury of astrocytes.  相似文献   

19.

Background and Purpose

Microglia are resident immunocompenent and phagocytic cells of central nervous system (CNS), which produce various cytokines and growth factors in response to injury and thereby regulate disease pathology. The purpose of this study is to investigate the effects of microglial transplantation on focal cerebral ischemia model in rat.

Methods

Transient middle cerebral artery occlusion (MCAO) in rats was induced by the intraluminal filament technique. HMO6 cells, human microglial cell line, were transplanted intravenously at 48 hours after MCAO. Functional tests were performed and the infarct volume was measured at 7 and 14 days after MCAO. Migration and cell survival of transplanted microglial cells and host glial reaction in the brain were studied by immunohistochemistry. Gene expression of neurotrophic factors, cytokines and chemokines in transplanted cells and host rat glial cells was determined by laser capture microdissection (LCM) and quantitative real time-PCR.

Results

HMO6 human microglial cells transplantion group demonstrated significant functional recovery compared with control group. At 7 and 14 days after MCAO, infarct volume was significantly reduced in the HMO group. In the HMO6 group, number of apoptotic cells was time-dependently reduced in the infarct core and penumbra. In addition, number of host rat microglia/macrophages and reactive astrocytes was significantly decreased at 7 and 14 days after MCAO in the penumbra. Gene expression of various neurotrophic factors (GDNF, BDNF, VEGF and BMP7) and anti-inflammatory cytokines (IL4 and IL5) was up-regulated in transplanted HMO6 cells of brain tissue compared with those in culture. The expression of GDNF and VEGF in astrocytes in penumbra was significantly up-regulated in the HMO6 group.

Conclusions

Our results indicate that transplantation of HMO6 human microglial cells reduces ischemic deficits and apoptotic events in stroke animals. The results were mediated by modulation of gliosis and neuroinflammation, and neuroprotection provided by neurotrophic factors of endogenous and transplanted cells-origin.  相似文献   

20.
Remote ischemic perconditioning (RIPer) has been proved to provide potent cardioprotection. However, there are few studies on neuroprotection of RIPer. This study aims to clarify the neuroprotective effect of RIPer and the role of autophagy induced by RIPer against cerebral ischemia reperfusion injury in rats. Using a transient middle cerebral artery occlusion (MCAO) model in rats to imitate focal cerebral ischemia. RIPer was carried out 4 cycles of 10 min ischemia and 10 min reperfusion, with a thin elastic band tourniquet encircled on the bilateral femoral arteries at the start of 10 min after MCAO. Autophagy inhibitor 3-methyladenine (3-MA) and autophagy inducer rapamycin were administered respectively to determine the contribution of autophagy in RIPer. Neurologic deficit scores, infarct volume, brain edema, Nissl staining, TUNEL assay, immunohistochemistry and western blot was performed to analyze the neuroprotection of RIPer and the contribution of autophagy in RIPer. RIPer significantly exerted neuroprotective effects against cerebral ischemia reperfusion injury in rats, and the autophagy-lysosome pathway was activated by RIPer treatment. 3-MA reversed the neuroprotective effects induced by RIPer, whereas rapamycin ameliorated the brain ischemic injury. Autophagy activation contributes to the neuroprotection by RIPer against focal cerebral ischemia in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号