首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
G protein-coupled receptor kinase-2 (GRK2) serine-phosphorylates the platelet-derived growth factor receptor-beta (PDGFRbeta), and thereby diminishes signaling by the receptor. Because activation of GRK2 may involve phosphorylation of its N-terminal tyrosines by c-Src, we tested whether the PDGFRbeta itself could tyrosine-phosphorylate and activate GRK2. To do so, we used wild type (WT) and Y857F mutant PDGFRbetas in HEK cells, which lack endogenous PDGFRs. The Y857F PDGFRbeta autophosphorylates normally but does not phosphorylate exogenous substrates. Although PDGF-stimulated Y857F and WT PDGFRbetas activated c-Src equivalently, the WT PDGFRbeta tyrosine-phosphorylated GKR2 60-fold more than the Y857F PDGFRbeta in intact cells. With purified GRK2 and either WT or Y857F PDGFRbetas immunoprecipitated from HEK cells, GRK2 tyrosyl phosphorylation was PDGF-dependent and required the WT PDGFRbeta, even though the WT and Y857F PDGFRbetas autophosphorylated equivalently. This PDGFRbeta-mediated GRK2 tyrosyl phosphorylation enhanced GRK2 activity: GRK2-mediated seryl phosphorylation of the PDGFRbeta was 9-fold greater for the WT than for the Y857F in response to PDGF, but equivalent when GRK2 was activated by sequential stimulation of beta2-adrenergic and PDGF-beta receptors. Furthermore, both PDGFRbeta-mediated GRK2 tyrosyl phosphorylation and GRK2-mediated PDGFRbeta seryl phosphorylation were reduced approximately 50% in intact cells by mutation to phenylalanine of three tyrosines in the N-terminal domain of GRK2. We conclude that the activated PDGFRbeta itself phosphorylates GRK2 tyrosyl residues and thereby activates GRK2, which then serine-phosphorylates and desensitizes the PDGFRbeta.  相似文献   

2.
Binding of platelet-derived growth factor (PDGF) to the PDGF receptor (PDGFR) beta subunit triggers receptor tyrosine phosphorylation and the stable association of a number of signal transduction molecules, including phospholipase C gamma (PLC gamma), the GTPase activating protein of ras (GAP), and phosphatidylinositol-3 kinase (PI3K). Previous reports have identified three PDGFR tyrosine phosphorylation sites in the kinase insert domain that are important for stable association of GAP and PI3K. Two of them, tyrosine (Y) 740, and Y-751 are required for the stable association of PI3K, while Y-771 is required for binding of GAP. Here we present data for two additional tyrosine phosphorylation sites, Y-1009 and Y-1021, that are both in the carboxy-terminal region of the PDGFR. Characterization of PDGFR mutants in which these phosphorylation sites are substituted with phenylalanine (F) indicated that Y-1021 and Y-1009 were required for the stable association of PLC gamma and a 64-kDa protein, respectively. An F-1009/F-1021 double mutant selectively failed to bind both PLC gamma and the 64-kDa protein, whereas all of the carboxy-terminal mutants bound wild-type levels of GAP and PI3K. The carboxy terminus encodes the complete binding site for PLC gamma, since a phosphorylated carboxy-terminal fusion protein selectively bound PLC gamma. To determine the biological consequences of failure to associate with PLC gamma, we measured PDGF-dependent inositol phosphate production and initiation of DNA synthesis. The PDGFR mutants that failed to associate with PLC gamma were not able to mediate the PDGF-dependent production of inositol phosphates. Since tyrosine phosphorylation of PLC gamma enhances its enzymatic activity, we speculated that PDGFR mutants that failed to activate PLC gamma were unable to mediate its tyrosine phosphorylation. Surprisingly, the F-1021 receptor mediated readily detectable levels of PDGF-dependent PLC gamma tyrosine phosphorylation. Thus, the production of inositol phosphates requires not only PLC gamma tyrosine phosphorylation but also its association with the PDGFR. Comparison of the mutant PDGFRs' abilities to initiate PDGF-dependent DNA synthesis indicated that failure to associate with PLC gamma and produce inositol phosphates diminished the mitogenic response by 30%. In contrast, preventing the PDGFR from binding the 64-kDa protein did not compromise PDGF-triggered DNA synthesis at saturating concentrations of PDGF. Thus, it appears that phosphorylation of the PDGFR at Y-1021 is required for the stable association of PLC gamma to the receptor's carboxy terminus, the production of inositol phosphates, and initiation of the maximal mitogenic response.  相似文献   

3.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

4.
In response to binding of platelet-derived growth factor (PDGF), the PDGF receptor (PDGFR) beta subunit is phosphorylated on tyrosine residues and associates with numerous signal transduction enzymes, including the GTPase-activating protein of ras (GAP) and phosphatidylinositol 3-kinase (PI3K). Previous studies have shown that association of PI3K requires phosphorylation of tyrosine 751 (Y751) in the kinase insert and that this region of receptor forms at least a portion of the binding site for PI3K. In this study, the in vitro binding of GAP to the PDGFR was investigated. Like PI3K, GAP associates only with receptors that have been permitted to autophosphorylate, and GAP itself does not require tyrosine phosphate in order to stably associate with the phosphorylated PDGFR. To define which tyrosine residues are required for GAP binding, a panel of PDGFR phosphorylation site mutants was tested. Mutation of Y771 reduced the amount of GAP that associates to an undetectable level. In contrast, the F771 (phenylalanine at 771) mutant bound wild-type levels of PI3K, whereas the F740 and F751 mutants bound 3 and 23%, respectively, of the wild-type levels of PI3K but wild-type levels of GAP. The F740/F751 double mutant associated with wild-type levels of GAP, but no detectable PI3K activity, while the F740/F751/F771 triple mutant could not bind either GAP or PI3K. The in vitro and in vivo associations of GAP and PI3K activity to these PDGFR mutants were indistinguishable. The distinct tyrosine residue requirements suggest that GAP and PI3K bind different regions of the PDGFR. This possibility was also supported by the observation that the antibody to the PDGFR kinase insert Y751 region that blocks association of PI3K had only a minor effect on the in vitro binding of GAP. In addition, highly purified PI3K and GAP associated in the absence of other cellular proteins and neither cooperated nor competed with each other's binding to the PDGFR. Taken together, these studies indicate that GAP and PI3K bind directly to the PDGFR and have discrete binding sites that include portions of the kinase insert domain.  相似文献   

5.
The tyrosine phosphorylation sites in the human alpha PDGF receptor (alpha PDGFR) required for association with PI-3 kinase have been identified as tyrosines 731 and 742. Mutation of either tyrosine substantially reduced PDGF-induced PI-3 kinase activity but did not impair the receptor-mediated mitogenic response. We sought to determine whether PDGF-induced PI-3 kinase activity could be further ablated so as to exclude a low threshold requirement for PDGFR signal transduction. Thus, we mutated both tyrosine 731 and 742 and expressed the double mutant (Y731F/Y742F) in 32D hematopoietic cells. In such transfectants, PDGF induced no detectable receptor-associated or anti-P- Tyr recoverable PI-3 kinase activity. Under the same conditions, neither mobility shift of raf-1 nor tyrosine phosphorylation of either PLC gamma or MAP kinase was impaired. 32D transfectants expressing the double mutant showed wild-type alpha PDGFR levels of mitogenic and chemotactic responses to PDGF. To examine the effect of the double mutation in cells that normally respond to PDGF, we generated chimeras in which the cytoplasmic domains of wild-type alpha PDGFR, Y731F, and Y731F/Y742F were linked to the extracellular domain of colony- stimulating factor-1 (CSF-1) receptor (fms). After introduction of the chimeric receptors into mouse NIH/3T3 fibroblasts, the ability of CSF-1 to stimulate growth of these transfectants was examined. Our data show that all these chimeric receptors exhibited similar abilities to mediate CSF-1-stimulated cell growth. These findings lead us to conclude that PDGF-induced PI-3 kinase activity is not required for PDGF-stimulated mitogenic pathway in both NIH/3T3 fibroblasts and 32D hematopoietic cells.  相似文献   

6.
Activation of platelet-derived growth factor (PDGF) receptors occurs through ligand-induced dimerization and autophosphorylation. In this study, we investigated the effects of mutation of tyrosine residue 857 (Y857) in the activation loop of the PDGF β-receptor (PDGFRβ) to phenylalanine (Y857F). In agreement with previous observations, we found that PDGFRβY857F had a severely diminished in vitro kinase activity. However, in vivo the overall amount of tyrosine phosphorylation of PDGFRβY857F was similar to that of the wild-type receptor, except for the tyrosine residue 771 (Y771) which displayed a stronger phosphorylation in the mutant receptor. Analysis of the ability to induce signal transduction revealed that the PDGFRβY857F mutant had an attenuated activation of Akt and Erk1/2 MAP kinase. In contrast, the mutant receptor efficiently mediated phosphorylation of the ubiquitin-ligase c-Cbl that participates in receptor internalization and degradation, and PLCγ which has previously been shown to be connected with various cellular responses, including migration. However, the protein tyrosine phosphatase SHP-2, implicated in the PDGF-induced mitogenic response, together with the adaptor proteins Alix and Stam, involved in intracellular sorting of receptor, was not phosphorylated in cells expressing PDGFRβY857F. We found that both receptor variants were internalized from the cell surface and degraded at a comparable rate. Interestingly, PDGFRβY857F was unable to mediate PDGF-BB-induced mitogenic signaling, whereas it could elicit a chemotactic response.  相似文献   

7.
We have identified two tyrosine phosphorylation sites, Tyr 1009 and Tyr 1021, in the C-terminal noncatalytic region of the human platelet-derived growth factor (PDGF) receptor beta subunit. Mutant receptors with phenylalanine substitutions at either or both of these tyrosines were expressed in dog epithelial cells. Mutation of Tyr 1021 markedly reduced the PDGF-stimulated binding of phospholipase C (PLC) gamma 1 but had no effect on binding of the GTPase activator protein of Ras or of phosphatidylinositol 3 kinase. Mutation of Tyr 1009 reduced binding of PLC gamma 1 less severely. Mutation of Tyr 1021, or both Tyr 1009 and Tyr 1021, also reduced the PDGF-dependent binding of a transiently expressed fusion protein containing the two Src-homology 2 domains from PLC gamma 1. Mutation of Tyr 1021, or both Tyr 1009 and Tyr 1021, greatly reduced PDGF-stimulated tyrosine phosphorylation of PLC gamma 1 but did not prevent the tyrosine phosphorylation of other cell proteins, including mitogen-activated protein kinase. We conclude that Tyr 1021, and possibly Tyr 1009, is a binding site for PLC gamma 1.  相似文献   

8.
A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells. Therefore, it is likely that several different PDGF receptor-mediated signaling pathways function upstream of Ras, and the extent of the contribution of each pathway for the regulation of Ras may differ among different cell types.  相似文献   

9.
Several steps implicated in platelet-derived growth factor (PDGF) receptor-coupled signaling are activated by PDGF exposure at 0-4 degrees C. These include receptor self-phosphorylation, physical association with and phosphorylation of phospholipase C gamma (PLC gamma). Reduced temperature blocks PDGF internalization, making it possible to dissociate bound PDGF after PLC gamma tyrosine phosphorylation. We addressed the functional consequences of PDGF dissociation from intact cell PDGF receptors. PDGF exposure at 0-4 degrees C for 15 min stimulated self-phosphorylation of a subpopulation of BALB/c 3T3 cell PDGF beta-type receptors (35%) and initiated subsequent inositol phosphate production. A small fraction of cellular PLC gamma (1-3%) coprecipitated with ligand-activated PDGF receptors; 3-5% of cellular PLC gamma acquired phosphotyrosine. The PLC gamma coprecipitating with PDGF receptors did not contain detectible phosphotyrosine. Phosphotyrosine antibody recovered similar amounts of PLC gamma from soluble and particulate fractions of PDGF-stimulated cells. Acid dissociation of bound PDGF from receptor caused rapid dephosphorylation of PDGF receptors and PCL gamma, and interrupted PLC gamma-PDGF receptor coprecipitation. Orthovanadate blocked tyrosine dephosphorylation of both PDGF receptors and PLC gamma and stabilized coprecipitation. Orthovanadate reversed the acid wash effect to abrogate PDGF-stimulated inositol phosphate production. PDGF receptor remains competent to coprecipitate with PLC gamma and stimulate PLC-mediated inositol phosphate production if PDGF-induced receptor phosphorylation is maintained. Formation of a coprecipitable PDGF receptor-PLC gamma complex appears required for PDGF-stimulated inositol phosphate production.  相似文献   

10.
The platelet-derived growth factor beta receptor (betaPDGFR) is a receptor tyrosine kinase involved in multiple aspects of cell growth and differentiation. Upon activation, betaPDGFR is phosphorylated at up to nine different tyrosine residues. Phosphorylation of the receptor results in at least two different outcomes: recruitment of signaling molecules and activation of intrinsic receptor kinase activity. In order to evaluate the phosphorylation state of the receptor, phosphospecific antibodies were generated against peptides encompassing betaPDGFR phospho-Y751, phospho-Y771, or phospho-Y857. When phosphorylated, these sites enable the receptor to recruit signaling molecules PI3K or RasGAP, or enhance the receptor's kinase activity, respectively. We found that receptors phosphorylated at Y751, Y771, and Y857 display distinct temporal and spatial distribution by immunofluorescence. Subsequent biochemical studies revealed that receptor function corresponding to each of the phosphorylated sites was regulated as a function of time. Within the first 10 min, PDGF enhanced the receptor's kinase activity and initiated recruitment of PI3K and RasGAP. After prolonged exposure to PDGF, PI3K binding persisted to approximately 85% of the amount bound at 10 min, whereas binding of RasGAP and the exogenous kinase activity of the receptor diminished to less than 15% of the levels displayed at 10 min. We conclude that the phosphorylation state of the receptor, as well as its signaling capacity, is dynamic and changes as cells are continuously exposed to PDGF.  相似文献   

11.
E Peles  R B Levy  E Or  A Ullrich    Y Yarden 《The EMBO journal》1991,10(8):2077-2086
The neu/HER2 proto-oncogene encodes a transmembrane tyrosine kinase homologous to receptors for polypeptide growth factors. The oncogenic potential for the presumed receptor is released through multiple genetic mechanisms including a specific point mutation, truncation at the extracellular domain and overexpression of the protooncogene. Here we show that all these modes of oncogenic activation result in a constitutively phosphorylated neu protein and an increase in tyrosine phosphorylation of a phosphatidylinositol-specific phospholipase (PLC gamma). The examined transforming neu/HER2 proteins, unlike the normal gene product, also co-immunoprecipitated with PLC gamma molecules. A kinase-defective mutant of a transforming neu failed to mediate both tyrosine phosphorylation and association with PLC gamma, suggesting direct interaction of the neu kinase with PLC gamma. This possibility was examined by employing a chimeric protein composed of the extracellular ligand-binding domain of the epidermal growth factor receptor and the neu cytoplasmic portion. The chimeric receptor mediated rapid ligand-dependent modification of PLC gamma on tyrosine residues. It also physically associated, in a ligand-dependent manner, with the phosphoinositidase. Based on the presented results we suggest that the mechanism of cellular transformation by the neu/HER2 receptor involves tyrosine phosphorylation and activation of PLC gamma.  相似文献   

12.
We have examined the ability of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) to stimulate cultures of young and senescent WI-38 cells to carry out tyrosine-specific phosphorylation of their respective membrane receptors. Previously we reported no reduction in EGF-stimulated phosphorylation in plasma membrane preparations of senescent cells. In this study we found no reduction in PDGF-stimulated phosphorylation in plasma membrane preparations from senescent cells. Furthermore, we found no differences in the EGF- or PDGF-stimulated phosphorylation of their respective receptors in intact cells. These data support the previous findings that although the EGF receptor autokinase activity becomes highly labile during extraction and immunoprecipitation of senescent cells, in situ loss of receptor tyrosine kinase activity is apparently not responsible for the age-associated loss of mitogenic responsiveness.  相似文献   

13.
We have utilized site-directed mutants to study the role of autophosphorylation of the epidermal growth factor (EGF) receptor in the regulation of receptor kinase activity and ligand-induced endocytosis. A single mutation of the major autophosphorylation site, Y1173, and a double mutation of two autophosphorylation sites, Y1173 and Y1148, did not inhibit kinase activity in vivo, using PLC gamma 1 as a specific substrate for the EGF receptor kinase. The simultaneous mutation of three major autophosphorylation sites (Y1173, Y1148, Y1068), however, caused more than a 50% decrease in EGF-induced tyrosine phosphorylation of PLC gamma 1. The triple mutation also resulted in a substantial inhibition of the EGF-receptor endocytic system. We have used three types of experiments to analyze internalization, recycling, and degradation of EGF in cells with these mutants or the wild-type receptor. Using a simple mathematical model we have shown that the internalization rate constant is 2-fold lower in cells expressing the triple mutation receptor (F3 cells) than in cells expressing wild-type EGF receptor (wild-type cells). However, the rate constant for recycling was similar in both cell types. The EGF degradation rate constant was also lower in F3 cells. EGF-induced EGF receptor degradation was slower in F3 cells (t1/2 = 4 h) than in wild-type cells (t1/2 = 1 h). Therefore, our results suggest that multiple autophosphorylations of the carboxyl terminus of the EGF receptor are required for EGF receptor kinase activation, and for the internalization and intracellular processing of the EGF.receptor complex.  相似文献   

14.
The platelet-derived growth factor β receptor (βPDGFR) is a receptor tyrosine kinase involved in multiple aspects of cell growth and differentiation. Upon activation, βPDGFR is phosphorylated at up to nine different tyrosine residues. Phosphorylation of the receptor results in at least two different outcomes: recruitment of signaling molecules and activation of intrinsic receptor kinase activity. In order to evaluate the phosphorylation state of the receptor, phosphospecific antibodies were generated against peptides encompassing βPDGFR phospho-Y751, phospho-Y771, or phospho-Y857. When phosphorylated, these sites enable the receptor to recruit signaling molecules PI3K or RasGAP, or enhance the receptor's kinase activity, respectively. We found that receptors phosphorylated at Y751, Y771, and Y857 display distinct temporal and spatial distribution by immunofluorescence. Subsequent biochemical studies revealed that receptor function corresponding to each of the phosphorylated sites was regulated as a function of time. Within the first 10 min, PDGF enhanced the receptor's kinase activity and initiated recruitment of PI3K and RasGAP. After prolonged exposure to PDGF, PI3K binding persisted to approximately 85% of the amount bound at 10 min, whereas binding of RasGAP and the exogenous kinase activity of the receptor diminished to less than 15% of the levels displayed at 10 min. We conclude that the phosphorylation state of the receptor, as well as its signaling capacity, is dynamic and changes as cells are continuously exposed to PDGF.  相似文献   

15.
The amplitude of signaling evoked by stimulation of G protein-coupled receptors may be controlled in part by the GTPase accelerating activity of the regulator of G protein signaling (RGS) proteins. In turn, subcellular targeting, protein-protein interactions, or post-translational modifications such as phosphorylation may shape RGS activity and specificity. We found previously that RGS16 undergoes tyrosine phosphorylation on conserved tyrosine residues in the RGS box. Phosphorylation on Tyr(168) was mediated by the epidermal growth factor receptor (EGFR). We show here that endogenous RGS16 is phosphorylated after epidermal growth factor stimulation of MCF-7 cells. In addition, p60-Src or Lyn kinase phosphorylated recombinant RGS16 in vitro, and RGS16 underwent phosphorylation in the presence of constitutively active Src (Y529F) in EGFR(-) CHO-K1 cells. Blockade of endogenous Src activity by selective inhibitors attenuated RGS16 phosphorylation induced by pervanadate or receptor stimulation. Furthermore, the rate of RGS16 degradation was reduced in cells expressing active Src or treated with pervanadate or a G protein-coupled receptor ligand (CXCL12). Induction of RGS16 tyrosine phosphorylation was associated with increased RGS16 protein levels and enhanced GAP activity in cell membranes. These results suggest that Src mediates RGS16 tyrosine phosphorylation, which may promote RGS16 stability.  相似文献   

16.
17.
p62 is a highly tyrosyl phosphorylated protein that was first identified in immunoprecipitates of the GTPase-activating protein (GAP) of p21ras from cells transformed by oncogenic nonreceptor tyrosine kinases or stimulated through tyrosine kinase receptors (C. Ellis, M. Moran, F. McCormick, and T. Pawson, Nature 343:377-381, 1991). In this article we describe a highly related 62-kDa protein that becomes tyrosyl phosphorylated and associated with phospholipase C gamma (PLC gamma) in C3H10T1/2 cells stimulated with epidermal growth factor (EGF) or transformed by v-src. GAP-associated and PLC gamma-associated p62 comigrated in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited nearly identical phosphotryptic peptide patterns. That the association of p62 with PLC gamma was direct and not mediated through binding of GAP-p62 to PLC gamma or to the EGF receptor (and coprecipitation of the receptor with PLC gamma) was demonstrated by (i) the inability to detect GAP in PLC gamma immunocomplexes or PLC gamma in GAP immunocomplexes, (ii) the association of p62 with PLC gamma in v-src-transformed cells in the absence of EGF stimulation, and (iii) in vitro solution binding and direct blotting of p62 with a glutathione S-transferase fusion protein containing the Src homology 2 (SH2) domains of PLC gamma. Unlike GAP, whose N-terminal SH2 mediates the interaction between GAP and p62, PLC gamma was found to require both its N- and C-terminal SH2 regions for p62 binding. These studies demonstrate that a protein identical to or highly related to GAP-associated p62 binds PLC gamma and suggest a means by which "cross-talk" between PLC gamma- and GAP-mediated signalling may occur.  相似文献   

18.
The beta receptor for platelet-derived growth factor (beta PDGFR) is activated by binding of PDGF and undergoes phosphorylation at multiple tyrosine residues. The tyrosine-phosphorylated receptor associates with numerous SH2-domain-containing proteins which include phospholipase C-gamma 1 (PLC gamma), the GTPase-activating protein of Ras (GAP), the p85 subunit of phosphatidylinositol 3 kinase (PI3K), the phosphotyrosine phosphatase Syp, and several other proteins. Our previous studies indicated that PI3K and PLC gamma were required for relay of the mitogenic signal of beta PDGFR, whereas GAP and Syp did not appear to be required for this response. In this study, we further investigated the role of GAP and Syp in mitogenic signaling by beta PDGFR. Focusing on the PLC gamma-dependent branch of beta PDGFR signaling, we constructed a series of mutant beta PDGFRs that contained the binding sites for pairs of the receptor-associated proteins: PLC gamma and PI3K, PLC gamma and GAP, or PLC gamma and Syp. Characterization of these mutants showed that while all receptors were catalytically active and bound similar amounts of PLC gamma, they differed dramatically in their ability to initiate DNA synthesis. This signaling deficiency related to an inability to efficiently tyrosine phosphorylate and activate PLC gamma. Surprisingly, the crippled receptor was the one that recruited PLC gamma and GAP. Thus, GAP functions to suppress signal relay by the beta PDGFR, and it does so by silencing PLC gamma. These findings demonstrate that the biological response to PDGF depends not only on the ability of the beta PDGFR to recruit signal relay enzymes but also on the blend of these receptor-associated proteins.  相似文献   

19.
Tyrosine 785 is a major determinant of Trk--substrate interaction.   总被引:12,自引:3,他引:9       下载免费PDF全文
Interaction of the nerve growth factor (NGF) receptor/Trk with cellular substrates was investigated by transient co-overexpression in human 293 fibroblasts using ET-R, a chimeric receptor consisting of the epidermal growth factor receptor (EGF-R) extracellular ligand binding domain and the Trk transmembrane and intracellular signal-generating sequences. The chimera was fully functional, and associated with and phosphorylated phospholipase C gamma (PLC gamma), ras GTPase-activating protein (GAP) and the non-catalytic subunit of phosphatidylinositol-3'-kinase, p85, in a ligand-dependent manner. Deletion of 15 C-terminal amino acids, including tyrosine 785 (Y-785) abrogated receptor and substrate phosphorylation activities. Mutation of Y-785 to phenylalanine somewhat impaired receptor phosphorylation activity, which was reflected in reduced GAP and p85 phosphorylation. In contrast, ET-YF phosphorylation of PLC gamma was significantly reduced, while the high affinity association potential with this substrate was abrogated by this point mutation in vitro and in intact cells. Furthermore, a tyrosine-phosphorylated synthetic C-terminal peptide competitively inhibited Trk cytoplasmic domain association with PLC gamma. Thus, the short C-terminal tail appears to be a crucial structural element of the Trk cytoplasmic domain, and phosphorylated Y-785 is a major and selective interaction site for PLC gamma.  相似文献   

20.
The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号