首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

The cotton (Gossypium spp.) fiber cell is an important unicellular model for studying cell differentiation. There is evidence suggesting that phosphorylation is a critical post-translational modification involved in regulation of a wide range of cell activities. Nevertheless, the sites of phosphorylation in G. hirsutum and their regulatory roles in fiber cell initiation are largely unknown. In this study, we employed a mass spectrometry-based phosphoproteomics to conduct a global and site-specific phosphoproteome profiling between ovules of a fuzzless-lintless (fl) Upland cotton (G. hirsutum) mutant and its isogenic parental wild type (WT) at -3 and 0 days post-anthesis (DPA).

Results

A total of 830 phosphopeptides and 1,592 phosphorylation sites from 619 phosphoproteins were identified by iTRAQ (isobaric tags for relative and absolute quantitation). Of these, 76 phosphoproteins and 1,100 phosphorylation sites were identified for the first time after searching the P3DB public database using the BLAST program. Among the detected phosphopeptides, 69 were differentially expressed between the fl mutant and its WT in ovules at -3 and 0 DPA. An analysis using the Motif-X program uncovered 19 phosphorylation motifs, 8 of which were unique to cotton. A further metabolic pathway analysis revealed that the differentially phosphorylated proteins were involved in signal transduction, protein modification, carbohydrate metabolic processes, and cell cycle and cell proliferation.

Conclusions

Our phosphoproteomics-based research provides the first global overview of phosphorylation during cotton fiber initiation, and also offers a helpful dataset for elucidation of signaling networks in fiber development of G. hirsutum.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-466) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
The reniform nematode (Rotylenchulus reniformis) causes significant cotton (Gossypium hirsutum) losses in the southeastern United States. The research objective was to describe the effects of two resistant G. barbadense lines (cultivar TX 110 and accession GB 713) on development and fecundity of reniform nematode. Nematode development and fecundity were evaluated on the resistant lines and susceptible G. hirsutum cultivar Deltapine 16 in three repeated growth chamber experiments. Nematode development on roots early and late in the infection cycle was measured at set intervals from 1 to 25 d after inoculation (DAI) and genotypes were compared based on the number of nematodes in four developmental stages (vermiform, swelling, reniform, and gravid). At 15, 20, and 25 DAI, egg production by individual females parasitizing each genotype was measured. Unique reniform nematode developmental patterns were noted on each of the cotton genotypes. During the early stages of infection, infection and development occurred 1 d faster on susceptible cotton than on the resistant genotypes. Later, progression to the reniform and gravid stages of development occurred first on the susceptible genotype, followed by G. barbadense cultivar TX 110, and finally G. barbadense accession GB 713. Egg production by individual nematodes infecting the three genotypes was similar. This study corroborates delayed development previously reported on G. barbadense cultivar TX 110 and is the first report of delayed infection and development associated with G. barbadense accession GB 713. The different developmental patterns in the resistant genotypes suggest that unique or additional loci may confer resistance in these two lines.  相似文献   

6.

Background and Aims

The anatomy of Equisetum stems is characterized by the occurrence of vallecular and carinal canals. Previous studies on the carinal canals in several Equisetum species suggest that they convey water from one node to another.

Methods

Cell wall composition and ultrastructure have been studied using immunocytochemistry and electron microscopy, respectively. Serial sectioning and X-ray computed tomography were employed to examine the internode–node–internode transition of Equisetum ramosissimum.

Key Results

The distribution of the LM1 and JIM20 extensin epitopes is restricted to the lining of carinal canals. The monoclonal antibodies JIM5 and LM19 directed against homogalacturonan with a low degree of methyl esterification and the CBM3a probe recognizing crystalline cellulose also bound to this lining. The xyloglucan epitopes recognized by LM15 and CCRC-M1 were only detected in this lining after pectate lyase treatment. The carinal canals, connecting consecutive rings of nodal xylem, are formed by the disruption and dissolution of protoxylem elements during elongation of the internodes. Their inner surface appears smooth compared with that of vallecular canals.

Conclusions

The carinal canals in E. ramosissimum have a distinctive lining containing pectic homogalacturonan, cellulose, xyloglucan and extensin. These canals might function as water-conducting channels which would be especially important during the elongation of the internodes when protoxylem is disrupted and the metaxylem is not yet differentiated. How the molecularly distinct lining relates to the proposed water-conducting function of the carinal canals requires further study. Efforts to elucidate the spatial and temporal distribution of cell wall polymers in a taxonomically broad range of plants will probably provide more insight into the structural–functional relationships of individual cell wall components or of specific configurations of cell wall polymers.  相似文献   

7.

Background and Aims

Intraspecific variation in flooding tolerance is the basic pre-condition for adaptive flooding tolerance to evolve, and flooding-induced shoot elongation is an important trait that enables plants to survive shallow, prolonged flooding. Here an investigation was conducted to determine to what extent variation in flooding-induced leaf elongation exists among and within populations of the wetland species Rumex palustris, and whether the magnitude of elongation can be linked to habitat characteristics.

Methods

Offspring of eight genotypes collected in each of 12 populations from different sites (ranging from river mudflats with dynamic flooding regimes to areas with stagnant water) were submerged, and petioles, laminas and roots were harvested separately to measure traits related to elongation and plant growth.

Key Results

We found strong elongation of petioles upon submergence, and both among- and within-population variation in this trait, not only in final length, but also in the timing of the elongation response. However, the variation in elongation responses could not be linked to habitat type.

Conclusions

Spatio-temporal variation in the duration and depth of flooding in combination with a presumably weak selection against flooding-induced elongation may have contributed to the maintenance of large genetic variation in flooding-related traits among and within populations.  相似文献   

8.

Background and Aims

Plant cell enlargement is unambiguously coupled to changes in cell wall architecture, and as such various studies have examined the modification of the proportions and structures of glucuronoarabinoxylan and mixed-linkage glucan in the course of cell elongation in grasses. However, there is still no clear understanding of the mutual arrangement of these matrix polymers with cellulose microfibrils and of the modification of this architecture during cell growth. This study aimed to determine the correspondence between the fine structure of grass cell walls and the course of the elongation process in roots of maize (Zea mays).

Methods

Enzymatic hydrolysis followed by biochemical analysis of derivatives was coupled with immunohistochemical detection of cell wall epitopes at different stages of cell development in a series of maize root zones.

Key Results

Two xylan-directed antibodies (LM11 and ABX) have distinct patterns of primary cell wall labelling in cross-sections of growing maize roots. The LM11 epitopes were masked by mixed-linkage glucan and were revealed only after lichenase treatment. They could be removed from the section by xylanase treatment. Accessibility of ABX epitopes was not affected by the lichenase treatment. Xylanase treatment released only part of the cell wall glucuronoarabinoxylan and produced two types of products: high-substituted (released in polymeric form) and low-substituted (released as low-molecular-mass fragments). The amount of the latter was highly correlated with the amount of mixed-linkage glucan.

Conclusions

Three domains of glucuronoarabinoxylan were determined: one separating cellulose microfibrils, one interacting with them and a middle domain between the two, which links them. The middle domain is masked by the mixed-linkage glucan. A model is proposed in which the mixed-linkage glucan serves as a gel-like filler of the space between the separating domain of the glucuronoarabinoxylan and the cellulose microfibrils. Space for glucan is provided along the middle domain, the proportion of which increases during cell elongation.  相似文献   

9.
10.
Annexins are assumed to be involved in regulating cotton fiber elongation, but direct evidence remains to be presented. Here we cloned six Annexin genes (AnxGb) abundantly expressed in fiber from sea-island cotton (G. barbadense). qRT-PCR results indicated that all six G. barbadense annexin genes were expressed in elongating cotton fibers, while only the expression of AnxGb6 was cotton fiber-specific. Yeast two hybridization and BiFC analysis revealed that AnxGb6 homodimer interacted with a cotton fiber specific actin GbAct1. Ectopic-expressed AnxGb6 in Arabidopsis enhanced its root elongation without increasing the root cell number. Ectopic AnxGb6 expression resulted in more F-actin accumulation in the basal part of the root cell elongation zone. Analysis of AnxGb6 expression in three cotton genotypes with different fiber length confirmed that AnxGb6 expression was correlated to cotton fiber length, especially fiber elongation rate. Our results demonstrated that AnxGb6 was important for fiber elongation by potentially providing a domain for F-actin organization.  相似文献   

11.
12.

Background

Haloquadratum walsbyi represents up to 80 % of cells in NaCl-saturated brines worldwide, but is notoriously difficult to maintain under laboratory conditions. In order to establish the extent of genetic diversity in a natural population of this microbe, we screened a H. walsbyi enriched metagenomic fosmid library and recovered seven novel version of its cell-wall associated genomic island. The fosmid inserts were sequenced and analysed.

Results

The novel cell-wall associated islands delineated two major clades within H. walsbyi. The islands predominantly contained genes putatively involved in biosynthesis of surface layer, genes encoding cell surface glycoproteins and genes involved in envelope formation. We further found that these genes are maintained in the population and that the diversity of this region arises through homologous recombination but also through the action of mobile genetic elements, including viruses.

Conclusions

The population of H. walsbyi in the studied saltern brine is composed of numerous clonal lineages that differ in surface structures including the cell wall. This type of variation probably reflects a number of mechanisms that minimize the infection rate of predating viruses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1794-8) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background and Aims

Hybrid proline-rich proteins (HyPRPs) represent a large family of putative cell-wall proteins characterized by the presence of a variable N-terminal domain and a conserved C-terminal domain that is related to non-specific lipid transfer proteins. The function of HyPRPs remains unclear, but their widespread occurrence and abundant expression patterns indicate that they may be involved in a basic cellular process.

Methods

To elucidate the cellular function of HyPRPs, we modulated the expression of three HyPRP genes in tobacco (Nicotiana tabacum) BY-2 cell lines and in potato (Solanum tuberosum) plants.

Key Results

In BY-2 lines, over-expression of the three HyPRP genes with different types of N-terminal domains resulted in similar phenotypic changes, namely increased cell elongation, both in suspension culture and on solid media where the over-expression resulted in enhanced calli size. The over-expressing cells showed increased plasmolysis in a hypertonic mannitol solution and accelerated rate of protoplast release, suggesting loosening of the cell walls. In contrast to BY-2 lines, no phenotypic changes were observed in potato plants over-expressing the same or analogous HyPRP genes, presumably due to more complex compensatory mechanisms in planta.

Conclusions

Based on the results from BY-2 lines, we propose that HyPRPs, more specifically their C-terminal domains, represent a novel group of proteins involved in cell expansion.  相似文献   

14.

Background and Aims

Complete submergence is an important stress factor for many terrestrial plants, and a limited number of species have evolved mechanisms to deal with these conditions. Rumex palustris is one such species and manages to outgrow the water, and thus restore contact with the atmosphere, through upward leaf growth (hyponasty) followed by strongly enhanced petiole elongation. These responses are initiated by the gaseous plant hormone ethylene, which accumulates inside plants due to physical entrapment. This study aimed to investigate the kinetics of ethylene-induced leaf hyponasty and petiole elongation.

Methods

Leaf hyponasty and petiole elongation was studied using a computerized digital camera set-up followed by image analyses. Linear variable displacement transducers were used for fine resolution monitoring and measurement of petiole growth rates.

Key Results

We show that submergence-induced hyponastic growth and petiole elongation in R. palustris can be mimicked by exposing plants to ethylene. The petiole elongation response to ethylene is shown to depend on the initial angle of the petiole. When petiole angles were artificially kept at 0°, rather than the natural angle of 35°, ethylene could not induce enhanced petiole elongation. This is very similar to submergence studies and confirms the idea that there are endogenous, angle-dependent signals that influence the petiole elongation response to ethylene.

Conclusions

Our data suggest that submergence and ethylene-induced hyponastic growth and enhanced petiole elongation responses in R. palustris are largely similar. However, there are some differences that may relate to the complexity of the submergence treatment as compared with an ethylene treatment.  相似文献   

15.
16.
17.

Background

Agrobacterium-mediated transformation is widely used to produce insertions into plant genomes. There are a number of well-developed Agrobacterium-mediated transformation methods for dicotyledonous plants, but there are few for monocotyledonous plants.

Methods

Three hydrolase genes were transiently expressed in Brachypodium distachyon plants using specially designed vectors that express the gene product of interest and target it to the plant cell wall. Expression of functional hydrolases in genotyped plants was confirmed using western blotting, activity assays, cell wall compositional analysis and digestibility tests.

Key Results

An efficient, new, Agrobacterium-mediated approach was developed for transient gene expression in the grass B. distachyon, using co-cultivation of mature seeds with bacterial cells. This method allows transformed tissues to be obtained rapidly, within 3–4 weeks after co-cultivation. Also, the plants carried transgenic tissue and maintained transgenic protein expression throughout plant maturation. The efficiency of transformation was estimated at around 5 % of initially co-cultivated seeds. Application of this approach to express three Aspergillus nidulans hydrolases in the Brachypodium cell wall successfully confirmed its utility and resulted in the expected expression of active microbial proteins and alterations of cell wall composition. Cell wall modifications caused by expression of A. nidulans α-arabinofuranosidase and α-galactosidase increased the biodegradability of plant biomass.

Conclusions

This newly developed approach is a quick and efficient technique for expressing genes of interest in Brachypodium plants, which express the gene product throughout development. In the future, this could be used for broad functional genomics studies of monocots and for biotechnological applications, such as plant biomass modification for biofuel production.  相似文献   

18.
Endo I  Tange T  Osawa H 《Annals of botany》2011,108(2):279-290

Background and Aims

Root caps release border cells, which play central roles in microbe interaction and root protection against soil stresses. However, the number and connectivity of border cells differ widely among plant species. Better understanding of key border-cell phenotype across species will help define the total function of border cells and associated genes.

Methods

The spatio-temporal detachment of border cells in the leguminous tree Acacia mangium was investigated by using light and fluorescent microscopy with fluorescein diacetate, and their number and structural connectivity compared with that in soybean (Glycine max).

Key Results

Border-like cells with a sheet structure peeled bilaterally from the lateral root cap of A. mangium. Hydroponic root elongation partially facilitated acropetal peeling of border-like cells, which accumulate as a sheath that covers the 0- to 4-mm tip within 1 week. Although root elongation under friction caused basipetal peeling, lateral root caps were minimally trimmed as compared with hydroponic roots. In the meantime, A. mangium columella caps simultaneously released single border cells with a number similar to those in soybean.

Conclusions

These results suggest that cell type-specific inhibitory factors induce a distinct defective phenotype in single border-cell formation in A. mangium lateral root caps.  相似文献   

19.
Uridine diphosphate-glucose dehydrogenase (UGD, EC1.1.1.22 oxidizes UDP-Glc (UDP-D-glucose) to UDP-GlcA (UDP-Dglucuronate), a critical precursor of cell wall polysaccharides. GbUGD6 from Gossypium barbadense is more highly expressed late in the elongation of cotton fibers (15 d post-anthesis (DPA)) and during the stage of secondary cell wall thickening (30 DPA). Subcellular localization analysis in onion epidermis revealed that fluorescently labeled GbUGD6 protein was distributed throughout the cell membrane, as well as the nucleus and vacuoles. Examination of UGD function in Arabidopsis revealed that the antisense GbUGD6 lines had shorter roots, deferred blossoming, compared to wild-type plants. Activities of associated enzymes were also affected by UGD reduction, and biochemical analysis of cell wall samples showed an increase in cellulose levels and a decrease in UGP-GlcA contents. The results of the present study as well as previous studies on UGD support the conclusion that UGD plays a major role in synthesizing polysaccharides synthesis in the cell wall.  相似文献   

20.

Background and Aims

Changes occurring in the macromolecular traits of cell wall components in elm wood following attack by Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), are poorly understood. The purpose of this study was to compare host responses and the metabolic profiles of wood components for two Dutch elm (Ulmus) hybrids, ‘Groeneveld’ (a susceptible clone) and ‘Dodoens’ (a tolerant clone), that have contrasting survival strategies upon infection with the current prevalent strain of DED.

Methods

Ten-year-old plants of the hybrid elms were inoculated with O. novo-ulmi ssp. americana × novo-ulmi. Measurements were made of the content of main cell wall components and extractives, lignin monomer composition, macromolecular traits of cellulose and neutral saccharide composition.

Key Results

Upon infection, medium molecular weight macromolecules of cellulose were degraded in both the susceptible and tolerant elm hybrids, resulting in the occurrence of secondary cell wall ruptures and cracks in the vessels, but rarely in the fibres. The 13C nuclear magnetic resonance spectra revealed that loss of crystalline and non-crystalline cellulose regions occurred in parallel. The rate of cellulose degradation was influenced by the syringyl:guaiacyl ratio in lignin. Both hybrids commonly responded to the medium molecular weight cellulose degradation with the biosynthesis of high molecular weight macromolecules of cellulose, resulting in a significant increase in values for the degree of polymerization and polydispersity. Other responses of the hybrids included an increase in lignin content, a decrease in relative proportions of d-glucose, and an increase in proportions of d-xylose. Differential responses between the hybrids were found in the syringyl:guaiacyl ratio in lignin.

Conclusions

In susceptible ‘Groeneveld’ plants, syringyl-rich lignin provided a far greater degree of protection from cellulose degradation than in ‘Dodoens’, but only guaiacyl-rich lignin in ‘Dodoens’ plants was involved in successful defence against the fungus. This finding was confirmed by the associations of vanillin and vanillic acid with the DED-tolerant ‘Dodoens’ plants in a multivariate analysis of wood traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号