首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An overarching conclusion in the literature is that soil seed banks rarely contain many restoration‐target species and are often liabilities rather than assets to restoration. Our objective was to evaluate composition and spatial variation of seed banks and their potential contributions to restoration, including restoration‐target species such as rare species and those characterizing historical habitats. On 64 sites in a Midwestern U.S. oak savanna landscape, we sampled soil seed banks in seven habitat types (restored oak savannas, oak woodlands, and mesic prairies; unmanaged upland oak and mesic forests; and unmanaged and managed pine plantations). The germinable seed bank was exceptionally rich in restoration‐target species. In total for the 64 sites, seedlings of 127 species emerged from seed bank samples. Of the 101 native species, 56 were restoration‐target species, an unusually high number among seed bank studies. Restoration‐target species in seed banks included 13 threatened or endangered species, in addition to 43 other specialist species associated with high‐quality native habitats or on a floral list thought to characterize historical ecosystems. When analyzed across the 64‐site gradient, seed banks differed among the seven habitat types and varied with historical (1939) land use, recent management activities that restored open‐structured habitats, and biophysical gradients of tree density, soil drainage, and soil texture. While not all restoration‐target species were detected in the seed bank, the unusually high‐quality seed bank is a potential asset to restoration and was partly structured along environmental gradients across the landscape.  相似文献   

2.
  • Meta‐communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species‐assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant‐community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)—natural small‐scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat‐sloped, ephemeral, frequently plowed kettle holes vs. steep‐sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant‐community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non‐perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep‐sloped, more permanent kettle holes that had a higher percentage of wind‐dispersed species. In the flat kettle holes, plant‐species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant‐community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta‐ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.
  相似文献   

3.
In habitats where disturbance is frequent, seed banks are important for the regeneration of vegetation. Sand dune systems are dynamic habitats in which sand movement provides intermittent disturbance. As succession proceeds from bare sand to forest, the disturbance decreases. At Indiana Dunes National Lakeshore, we examined the seed banks of three habitat types across a successional gradient: foredunes, secondary dunes, and oak savanna. There were differences among the types of species that germinated from each of the habitats. The mean seed bank density increased across the successional gradient by habitat, from 376 to 433 to 968 seeds m−2, but with foredune and secondary dune seed bank densities being significantly lower than the savanna seed bank density. The number of seeds germinated was significantly correlated with soil organic carbon, demonstrating for this primary successional sequence that seed density increases with stage and age. The seed bank had much lower species richness than that of the aboveground vegetation across all habitats. Among sites within a habitat type, the similarity of species germinated from the seed banks was very low, illustrating the variability of the seed bank even in similar habitat types. These results suggest that restoration of these habitats cannot rely on seed banks alone.  相似文献   

4.
Capsule At coarse spatial resolution breeding Choughs showed strongest selection for grazed habitats, while at a finer resolution they selected areas with shorter swards and more friable soils.

Aims To explain habitat preferences of foraging Choughs during breeding using the physical characteristics of the habitats at three spatial resolutions: between broad habitat and management types, between compartments within types, and within individual compartments.

Methods The use of 15 different habitat and management types by 14 pairs of Choughs at four coastal breeding sites was measured and selection coefficients obtained. Vegetation and soil characteristics were used to explain variation in these coefficients at a coarse spatial resolution. Similar data in ‘selected’ and ‘avoided’ parts of individual compartments were used to explain preferences at a finer resolution.

Results Grazed habitats were most heavily used, although paths and stone-faced earth banks were most strongly selected. Sward height explained most variation in selection coefficients at a coarse spatial resolution, with the shortest swards used most. Within compartments, ‘selected’ foraging sites had shorter swards and soil that was easier to probe. Comparisons between years suggested large-scale preferences were the same, but changes in physical characteristics did not explain changes in the use of individual compartments.

Conclusion These and previous results suggest consistency in habitat selection at a coarse spatial resolution. The use of grazing to maintain or increase the area of sward approaching 2 cm in height is recommended to ensure that where prey size and density are profitable, some are always accessible.  相似文献   

5.
Plants reduce risk of extinction due to unpredictable rainfall by soil seed banks, dispersal or large seeds. However, seed size also increases independently in dry habitats, and since seed size is in a trade-off with seed number, size of seed banks is expected to increase in moister habitats. Therefore, we wanted to test if seed abundance in soil increases in wet habitats, if seed size increases in dry habitats, and if spread of seeds along the gradient is higher for plants of intermediate habitats in local moisture gradients.We studied 15 temporary pools in three biogeographically separated wetlands in Southern France. For each pool we studied five different moisture levels, totalling 75 local plant communities. We quantified soil seed bank by the seedling emergence method, seed size and an index of spatial spread of seeds in the soil for every species. We also quantified water levels for each plot.We found increasing abundance of seeds in the soil with increasing water levels but lower seed size and higher spread at intermediate water levels. When we controlled for niche position, we found no trade-off between seed size, spread and abundance in the soil seed bank.Type and importance of risk reduction strategies thus appeared to be strongly driven by the plant species’ moisture niche and the spatial arrangement of water levels.  相似文献   

6.
In this study we investigated the variations in soil seed banks along an altitudinal gradient in the Alborz mountains, Iran, covering three habitats from lower to upper altitudes: forest, forest-subalpine grassland ecotone and subalpine meadow. In each habitat from 1850 to 2400 m, 20 quadrats were established along four transects, and the above-ground vegetation and the germinable seed banks were determined. Results show that the similarity between seed bank and vegetation was lowest in the ecotone located at intermediate altitudes. Together with the contrasting highest density and species diversity of seeds at these altitudes, the ecotonal role of this habitat was confirmed.We found evidence that lower altitudes could act as storage for seeds of some species growing at higher altitudes; the role of the ecotone was more prominent as a reserve for the meadow plant seeds than the role of the forest as a reserve for seeds of the meadow and ecotone habitats. Soil seed banks, particularly from the ecotone, can be used for restoring vegetation in some degraded sites.  相似文献   

7.
Large seed banks have been found in tropical dry forests and also in habitats with high seasonality in rainfall. However, patchily structured vegetation could induce great spatial variation in the seed bank. We characterized the seed bank in a patchy vegetation of restinga, a common type of coastal vegetation found in the Atlantic forest biome. We also evaluated whether there is any spatial variation between the litter and soil layer, bare sand, and the edge and center of vegetation patches with distinct species dominance. We found 104 seeds/m2 in the seed bank using a 5‐cm‐depth sampling. Seven out of 16 species found in the restinga seed bank germinated; two of these were found in the early stages of vegetation patches. We found a higher number of seeds at the edge than in the center of vegetation patches. However, there were no significant differences in the number of seeds in the seed bank between the litter and soil layer, and between vegetation patches with distinct species dominance. Bare sandy soils had lower seed bank densities than vegetation patches. A small seed bank size might be explained by the low proportion of seeds from herbaceous and woody species, which are pioneers in the Atlantic forest. However, seed bank might play an important role in the early stages of the successional process, due to the occurrence of the few species that are able to colonize new young vegetation patches.  相似文献   

8.
To identify factors affecting the spatial distribution of soil seed banks of herbaceous species in the Pantanal floodplain, Brazil, the aims of this study were: to characterize the seed bank in terms of the abundance, richness and composition of germinated seeds; to relate these characteristics to flood duration, elevation, chemical and physical properties of the soil and to examine the seed bank’s spatial pattern. Soil samples were collected at 14 points and were then placed in a greenhouse to allow germination to occur. Each sample point had the flood level monitored, the elevation measured and the soil properties identified. A total of 1710 seedlings from 26 species were recorded, of which Echinodorus tenelus was the most abundant (24.9%). Cyperaceae and Poaceae were the richest floristic families (5 species each), with Alismataceae the most represented in terms of number of individuals (36% of the total). Duration of flooding plays an important role in determining Pantanal soil seed banks. The flood pulse influences the abundance (r = 0.79; P = 0.006; partial), richness (r = 0.61; P = 0.02; partial) and composition of the soil seed bank (Pillai trace = 0.552; P = 0.027), carrying the seeds to areas where the duration of flood is longer. Except for aluminium, the soil characteristics expressed by the first principal component of PCA exert indirect positive effects on the seed bank. This is because this component was correlated with the duration of inundation (r = 0.76). Elevation and the toxic effect of aluminium do not vary sufficiently to be able to influence seed bank characteristics. The correlograms show that soil seed banks have no discernible spatial pattern, even though most species are dispersed hydrochorically. This suggests that, at the scale of the study, the tendency for flooding to cause homogeneous dispersion has no influence on seed‐bank spatial structure, because of the complexity of flood‐plain geomorphology. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near‐natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above‐ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short‐term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north‐western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.  相似文献   

10.

Background

Knowledge about how frugivory and seed deposition are spatially distributed is valuable to understand the role of dispersers on the structure and dynamics of plant populations. This may be particularly important within anthropogenic areas, where either the patchy distribution of wild plants or the presence of cultivated fleshy-fruits may influence plant-disperser interactions.

Methodology/Principal Findings

We investigated frugivory and spatial patterns of seed deposition by carnivorous mammals in anthropogenic landscapes considering two spatial scales: ‘landscape’ (∼10 km2) and ‘habitat type’ (∼1–2 km2). We sampled carnivore faeces and plant abundance at three contrasting habitats (chestnut woods, mosaics and scrublands), each replicated within three different landscapes. Sixty-five percent of faeces collected (n = 1077) contained seeds, among which wild and cultivated seeds appeared in similar proportions (58% and 53%) despite that cultivated fruiting plants were much less abundant. Seed deposition was spatially structured among both spatial scales being different between fruit types. Whereas the most important source of spatial variation in deposition of wild seeds was the landscape scale, it was the habitat scale for cultivated seeds. At the habitat scale, seeds of wild species were mostly deposited within mosaics while seeds of cultivated species were within chestnut woods and scrublands. Spatial concordance between seed deposition and plant abundance was found only for wild species.

Conclusions/Significance

Spatial patterns of seed deposition by carnivores differed between fruit types and seemed to be modulated by the fleshy-fruited plant assemblages and the behaviour of dispersers. Our results suggest that a strong preference for cultivated fruits by carnivores may influence their spatial foraging behaviour and lower their dispersal services to wild species. However, the high amount of seeds removed within and between habitats suggests that carnivores must play an important role – often overlooked – as ‘restorers’ and ‘habitat shapers’ in anthropogenic areas.  相似文献   

11.
Many Amazon River fishes consume fruits and seeds from floodplain forests during the annual flood season, potentially serving as important seed dispersers and predators. Using a participatory approach, this study investigated how within-season variation in flood level relates to fruit consumption and seed dispersal by two important frugivorous fish, Colossoma macropomum and Piaractus brachypomus , in two Lower Amazon River fishing communities in Brazil. Diets of both fish species were comprised of 78–98 percent fruits, largely dominated by a few species. Diets included fruits of 27 woody angiosperms and four herbaceous species from 26 families, indicating the importance of forest and Montrichardia arborescens habitat during peak flood. A correspondence between peak fruit species richness and peak flood level was observed in one of two communities, which may reflect higher forest diversity and/or differences in selection of fishing habitat. Both fishes are seed dispersers and predators, the relative role of which did not vary by flood level, seed size, or fish size, but may vary with seed hardness. Interspecific differences in diet volume and intact seeds suggest P. brachypomus are more effective seed dispersers than C. macropomum . Overall, the spatial and temporal variation in fruit species composition and richness demonstrate plasticity in fruit consumption in relation to flood level and locally available fruits. While such diets are adaptive to the dynamic changes of Amazon floodplain habitats, the high consumption of forest fruits and seeds from mid- and late-successional species suggests that floodplain forest degradation could disrupt seed dispersal and threaten local and regional fisheries.  相似文献   

12.
1. At a local scale, the species composition, diversity and spatial variation of wetland plant communities are determined primarily by spatial and temporal heterogeneity in their environments. Less is known about variation at a landscape‐level. The floodplain of the Changjiang (Yangtze) River in China includes hydrologically connected, subtropical wetlands with different hydrological characteristics. 2. We examined seed‐bank species composition and richness in marshes of two contrasting hydrological types: permanent marshes, fed by local runoff, and lakeshore marshes more closely connected to the regulated river. Lakeshore marshes are flooded annually to depth of approximately 1 m and during flooding they support an alternate, aquatic vegetation type. The soil seed bank in March was a comparative estimator of species diversity. At the beginning of the growing season it included seeds from both phases of alternating vegetation types associated with the annual hydrological cycle. 3. A regional pool of 101 species was detected in the seed banks of six wetlands associated with the river and its tributaries: 56 occurred in permanent marshes and 59 in lakeshore marshes, with only 15 common to both. Species rarefaction curves indicated that more species occurred in permanent than lakeshore marshes at equal numbers of individuals sampled. However, the more heterogeneous lakeshore seed banks were estimated (Chao 2) to have greater total species richness (81) than permanent marsh (60). 4. Analysis using Sørensen's coefficient of similarity and DCA ordination revealed complex variation, with much greater differences between hydrological types than within them, irrespective of geographical distance. The types also differed significantly in the composition of four functional groups of species. 5. Despite the potential for dispersal of propagules via the annually pulsing river system (hydrochory), at a regional and landscape scale, diversity is maintained largely by large‐scale temporal hydrological heterogeneity and smaller scale spatial and topographic heterogeneity.  相似文献   

13.
滴灌下新疆北部棉田杂草土壤种子库的时空变化   总被引:3,自引:0,他引:3  
以天山北坡绿洲至沙漠边缘垂直分布的3个试验点,对比分析了漫灌和1a至4、8a的不同滴灌时间的棉田,以及不同试验点和土层深度等不同空间的杂草土壤种子库变化.结果表明,滴灌对棉田杂草种子库影响大,物种数和单位面积的种子库密度的年际间波动明显.连续滴灌改变了杂草土壤种子库的结构和组成,物种数由漫灌27种下降到1a滴灌的20种,滴灌8a后下降到15种,Shannon-Wiener多样性指数达到最低,单位面积的种子密度明显降低.随着滴灌年限的增长,狗尾草、藜、龙葵、反枝苋和凹头苋等喜旱性杂草占总种子库的比例逐渐增加,为滴灌棉田的优势杂草.狗尾草、藜、灰绿藜、龙葵、马齿苋、凹头苋、刺儿菜、黄花蒿、苦苣菜、小蓬草、荠菜、小藜、扁蓄、苘麻、田旋花、野薄荷等物种时间生态位宽度和空间生态位宽度均较大,适应较好,而虎尾草、百脉根、播娘蒿、酸模叶蓼、滨藜、野胡麻等物种生存受到明显影响.受耕作方式影响,杂草种子库主要分布于耕作层,耕作层以下46~50cm种子数最少.水平分布格局分析发现,3个地点杂草种子库的物种相似性较高,滴灌与漫灌之间种子库的物种差异要大于地理位置间的差异.  相似文献   

14.
I examined the effect of riparian forest restoration on plant abundance and diversity, including weed species, on agricultural lands along the Sacramento River in California (United States). Riparian forest restoration on the Sacramento River is occurring on a large‐scale, with a goal of restoring approximately 80,000 ha over 160 km of the river. In multiuse habitats, such as the Sacramento River, effects of adjoining habitat types and movement of species across these habitats can have important management implications in terms of landscape‐scale patterns of species distributions. Increased numbers of pest animals and weeds on agricultural lands associated with restored habitats could have negative economic impacts, and in turn affect support for restoration of natural areas. In order to determine the distribution and abundance of weeds associated with large‐scale restoration, I collected seed bank soil samples on orchards between 0 and 5.6 km from adjacent restored riparian, remnant riparian, and agricultural habitats. I determined the abundance, species richness, and dispersal mode of plant species in the seed bank and analyzed these variables in terms of adjacent habitat type and age of restored habitat. I found that agricultural weed species had higher densities at the edge of restored riparian habitat and that native plants had higher densities adjacent to remnant riparian habitat. Weed seed abundance increased significantly on walnut farms adjacent to restored habitat with time since restored. I supply strong empirical evidence that large areas of natural and restored habitats do not lead to a greater penetration of weed species into agricultural areas, but rather that weed penetration is both temporally and spatially limited.  相似文献   

15.
Species have phenological variation among local habitats that are located at relatively small spatial scales. However, less studies have tested how this spatial variability in phenology can mediate intra-/inter-specific interactions. When predators track phenological variation of prey among local habitats, survival of prey within a local habitat strongly influenced by phenological synchrony with their conspecifics in adjacent habitats. Theory predicts that phenological synchrony among local habitats increases prey survival in local habitat within spatially structured environments because the predators have to make a habitat choice for foraging. Consequently, total survival of prey at regional scale should be higher. By using a spatially explicit field experiment, we tested above hypothesis using a prey–predator interaction between tadpole (Rhacophorus arboreus) and newt (Cynops pyrrhogaster). We established enclosures (≈regional scale) consisting of two tanks (≈local habitat scale) with different degree of prey phenological synchrony. We found that phenological synchrony of prey between tanks within each enclosure decreased the mean residence time of the predator in each tank, which resulted in higher survival of prey at a local habitat scale, supporting the theoretical prediction. Furthermore, individual-level variation in predator residence time explained the between-tank variation in prey survival in enclosures with phenological synchrony, implying that movement patterns of the predator can mediate variation in local population dynamics of their prey. However, total survival at each enclosure was not higher under phenological synchrony. These results suggest the importance of relative timing of prey phenology, not absolute timing, among local habitats in determining prey–predator interactions.  相似文献   

16.
An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go ‘extinct’ during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results.  相似文献   

17.
土壤种子库的分类系统和种子在土壤中的持久性   总被引:21,自引:2,他引:19  
于顺利  陈宏伟  郎南军 《生态学报》2007,27(5):2099-2108
对国际上已经发表的10个土壤种子库分类系统的内容进行了总结和阐述,并对土壤种子库分类系统进行了评述,其中Thompson & Grime在1979年提出的把土壤种子库分为短暂土壤种子库(Transient soil seed bank)和持久土壤种子库(Persistent seed bank)的二元分类系统以及Thompson等人提出的把土壤种子库分为(1)短暂土壤种子库,(2)短期持久土壤种子库(Short term persistent seed bank),(3)长期土壤种子库(Long termp ersistent seed bank)的三元分类系统在生态学文献中已被广泛采用。在此分类的基础上产生了植物种子在土壤中的持久性(Persistence)概念,持久性是指植物的一种特性,是指植物的种子在土壤中能够存活超过1a的特性;植物种子的持久性被认为是一种对环境的进化适应,它可以在多个生长季节萌发从而分担环境震荡的风险,持久土壤种子库不仅在不稳定的环境里占有优势;即使在稳定的环境里,也被认为能够减少种内和种间的竞争;造成持久性的原因可分为环境因子和种子本身的特性比如休眠等两个方面,持久土壤种子库的出现使得土壤种子库的研究与进化生物学结合起来,使得土壤种子库的研究进入一个新的领域,更易激发人们的兴趣。关于种子的大小、形状及持久性的关系问题已经引起了相当的争论,基本上有4种格局:一是种子大小和形状与种子在土壤中的持久性有关,小而圆或扁的种子在土壤易存活持久;二是种子大小与种子在土壤中的持久性有关,小种子在土壤中易存活持久,但种子形状与持久性无关;三是种子大小、形状与种子在土壤中的持久性无关;四为较大的种子在土壤易存活持久,而种子形状与种子在土壤中的持久性无关。影响种子在土壤中的持久性因子比较复杂,总结过去的文献发现主要有以下几个因子:①种子的散布方式,②捕食,③植被的物种组成,④风,⑤土壤基质,⑥火,⑦干扰等。通过比较分析和研究,提出影响种子大小和在土壤中的持久性关系格局的关键因子是气候,特别是生态系统所在地的雨量;湿润气候下容易产生前两种格局,而干旱环境下的生境容易产生后两种格局。  相似文献   

18.
湿地土壤种子库与地上植被相似性关系研究评述   总被引:3,自引:0,他引:3  
刘庆艳  姜明  吕宪国  王国栋 《生态学报》2014,34(24):7465-7474
土壤种子库与地上植被的关系是土壤种子库研究的重要组成部分。当前,湿地生态系统面临严重威胁,研究湿地土壤种子库和地上植被关系既可以加强对土壤种子库和植物群落特征的认识,又可以为湿地保护与管理提供理论指导。检索了科学引文索引扩展版(SCIE)数据库中收录的1900—2012年间研究湿地土壤种子库与地上植被关系的文献,通过分析土壤种子库与地上植被的Srensen相似性系数,结果发现:不同湿地类型的土壤种子库和地上植被的相似性存在显著差异,河流湿地中两者的相似性最小;不同植被类型中土壤种子库与地上植被的相似性差异显著:草本群落的相似性大于乔木群落;不同气候带的湿地中两者的相似性也存在显著差异,其中亚热带地区相似性最小。总结了湿地种子库与地上植被相似性关系的时空变化特征。二者的相似性通常随着植物群落的演替而减小,在空间上也随着环境梯度而变化。分析了两者关系的影响因素,如种子传播、环境条件和繁殖策略等。对研究中存在的问题及发展方向提出建议。  相似文献   

19.
20.
Abstract. To assess seed bank persistence of target species in endangered flood‐meadows (alliances Cnidion and Molinion), we investigated established vegetation and soil seed bank of 46 plots for 3 yr and 2 yr, respectively. As traits of seed persistence we calculated various continuous indices that refer to the frequency and abundance of species in above‐ground vegetation and at different soil depths. Furthermore, we tested the significance and soundness of easily observed traits such as maximum seed density per plot and seed attributes (mass, size and shape) as predictors of soil seed bank features. In linear regression, SAI, the seed accumulation index, showed the best agreement (R2= 0.64) with the seed longevity index that was derived from the database by Thompson et al. (1997) for a set of 115 species. The second best predictor (R2= 0.39) of the seed longevity index was maximum seed density per plot in the lower soil layer (5–10 cm). Depth distribution indices and seed attributes showed weaker but still significant relations. The dynamic character of flood‐meadows was reflected by a large proportion of species with a strong tendency to accumulate seeds in the soil relative to their importance in above‐ground vegetation. Most of these species have a ruderal strategy, exploiting gaps after flood disturbances, while the dominants of flood‐meadows tended to have short‐lived seed banks. Compared to other grassland types, a relatively large proportion of rare and endangered target species can be expected to form long‐term persistent seed banks. However, only under marginal conditions that facilitate seed survival in the soil (e.g. fallow) are these persistent seed banks likely to contribute to restoration. We conclude that easily observed traits of persistence such as seed weight, size and shape do not meet the accuracy needed in scientific and practical applications. Thus, there is a crucial demand for further seed bank studies in poorly investigated habitats and of rare species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号