首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian centromere-associated protein B (CENP-B) shares significant sequence similarity with 3 proteins in fission yeast (Abp1, Cbh1, and Cbh2) that also bind centromeres and have essential function for chromosome segregation and centromeric heterochromatin formation. Each of these proteins displays extensive sequence similarity with pogo-like transposases, which have been previously identified in the genomes of various insects and vertebrates, in the protozoan Entamoeba and in plants. Based on this distribution, it has been proposed that the mammalian and fission yeast centromeric proteins are derived from "domesticated" pogo-like transposons. Here we took advantage of the vast amount of sequence information that has become recently available for a wide range of fungal and animal species to investigate the origin of the mammalian CENP-B and yeast CENP-B-like genes. A highly conserved ortholog of CENP-B was detected in 31 species of mammals, including opossum and platypus, but was absent from all nonmammalian species represented in the databases. Similarly, no ortholog of the fission yeast centromeric proteins was identified in any of the various fungal genomes currently available. In contrast, we discovered a plethora of novel pogo-like transposons in diverse invertebrates and vertebrates and in several filamentous fungi. Phylogenetic analysis revealed that the mammalian and fission yeast CENP-B proteins fall into 2 distinct monophyletic clades, each of which includes a different set of pogo-like transposons. These results are most parsimoniously explained by independent domestication events of pogo-like transposases into centromeric proteins in the mammalian and fission yeast lineages, a case of "convergent domestication." These findings highlight the propensity of transposases to give rise to new host proteins and the potential of transposons as sources of genetic innovation.  相似文献   

2.
Site-specific recombination systems, such as the bacteriophage Cre-lox and yeast FLP-FRT systems, have become valuable tools for the rearrangement of DNA in higher eukaryotes. As a first step to expanding the repertoire of recombination tools, we screened recombination systems derived from the resolvase/invertase family for site-specific recombinase activity in the fission yeast Schizosaccharomyces pombe. Here, we report that seven recombination systems, four from the small serine resolvase subfamily (CinH, ParA, Tn1721, and Tn5053) and three from the large serine resolvase subfamily (Bxb1, TP901-1, and U153), can catalyze site-specific deletion in S. pombe. Those from the large serine resolvase subfamily were also capable of site-specific integration and inversion. In all cases, the recombination events were precise. Functional operation of these recombination systems in the fission yeast holds promise that they may be further developed as recombination tools for the site-specific rearrangement of plant and animal genomes.  相似文献   

3.
We present a brief guide to resources on the Internet relating to Protein-Protein Interactions. These include databases containing experimentally verified and computationally inferred physical and functional interactions. There are also tools for predicting interactions and for extracting information on interactions from the literature, and organism specific databases.  相似文献   

4.
The fission yeast, Schizosaccharomyces pombe, has been used as a model eukaryote to study processes such as the cell cycle and cell morphology. In this single-celled organism, growing in a straight line and maintaining the nucleus in the centre of the cell depend on intracellular positional information. Microtubules and microtubular transport are important for generating positional information within the fission yeast cell, and these molecular mechanisms are also probably relevant for generating positional information in other eukaryotic cells.  相似文献   

5.
《Genomics》2019,111(6):1923-1928
An online portal, accessible at URL: http://mail.nbfgr.res.in/FisOmics/, was developed that features different genomic databases and tools. The portal, named as FisOmics, acts as a platform for sharing fish genomic sequences and related information in addition to facilitating the access of high-performance computational resources for genome and proteome data analyses. It provides the ability for quarrying, analysing and visualizing genomic sequences and related information. The featured databases in FisOmics are in the World Wide Web domain already. The aim to develop portal was to provide a nodal point to access the featured databases and work conveniently. Presently, FisOmics includes databases on barcode sequences, microsatellite markers, mitogenome sequences, hypoxia-responsive genes and karyology of fishes. Besides, it has a link to other molecular resources and reports on the on-going activities and research achievements.  相似文献   

6.
Plant genome databases play an important role in the archiving and dissemination of data arising from the international genome projects. Recent developments in bioinformatics, such as new software tools, programming languages and standards, have produced better access across the Internet to the data held within them.An increasing emphasis is placed on data analysis and indeed many resources now provide tools allied to the databases, to aid in the analysis and interpretation of the data. However, a considerable wealth of information lies untapped by considering the databases as single entities and will only be exploited by linking them with a wide range of data sources. Data from research programs such as comparative mapping and germplasm studies may be used as tools, to gain additional knowledge but without additional experimentation. To date, the current plant genome databases are not yet linked comprehensively with each other or with these additional resources, although they are clearly moving toward this. Here, the current wealth of public plant genome databases is reviewed, together with an overview of initiatives underway to bind them to form a single plant genome infrastructure.  相似文献   

7.
Yeast genomic databases and the challenge of the post-genomic era   总被引:3,自引:0,他引:3  
Since the completion of the yeast genome sequence in 1996, three genomic databases, the Saccharomyces Genome Database, the Yeast Proteome Database, and MIPS (produced by the Munich Information Center for Protein Sequences), have organized published knowledge of yeast genes and proteins onto the framework of the genome. Now, post-genomic technologies are producing large-scale datasets of many types, and these pose new challenges for knowledge integration. This review first examines the structure and content of the three genomic databases, and then draws from them and other resources to examine the ways knowledge from the literature, genome, and post-genomic experiments is stored, integrated, and disseminated. To better understand the impact of post-genomic technologies, 20 collections of post-genomic data were analyzed relative to a set of 243 previously uncharacterized genes. The results indicate that post-genomic technologies are providing rich new information for nearly all yeast genes, but data from these experiments is scattered across many Web sites and the results from these experiments are poorly integrated with other forms of yeast knowledge. Goals for the next generation of databases are set forth which could lead to better access to yeast knowledge for yeast researchers and the entire scientific community. Electronic Publication  相似文献   

8.
9.
The fission yeast Schizosaccharomyces pombe serves as a model system for studying role of actin cytoskeleton, since it has simple actin cytoskeletons and is genetically tractable. In contrast, biochemical approaches using this organism are still developing; fission yeast actin has so far not been isolated in its native form and characterized, and therefore, biochemical assays of fission yeast actin-binding proteins (ABPs) or myosin have been performed using rabbit skeletal muscle actin that may interact with the fission yeast ABPs in a manner different from fission yeast actin. Here, we report a novel method for isolating functionally active actin from fission yeast cells. The highly purified fission yeast actin polymerized with kinetics somewhat different from those of muscle actin and forms filaments that are structurally indistinguishable from skeletal muscle actin filaments. The fission yeast actin was a significantly weaker activator of Mg(2+)-ATPase of HMM of skeletal muscle myosin than muscle actin. The fission yeast profilin Cdc3 suppressed polymerization of fission yeast actin more effectively than that of muscle actin and showed an affinity for fission yeast actin higher than for muscle actin. The establishment of purification of fission yeast actin will enable reconstruction of physiologically relevant interactions between the actin and fission yeast ABPs or myosins and contribute to clarification of function of actin cytoskeleton in various cellular activities.  相似文献   

10.
11.
12.
Modelling and simulation techniques are valuable tools for the understanding of complex biological systems. The design of a computer model necessarily has many diverse inputs, such as information on the model topology, reaction kinetics and experimental data, derived either from the literature, databases or direct experimental investigation. In this review, we describe different data resources, standards and modelling and simulation tools that are relevant to integrative systems biology.  相似文献   

13.
A complete set of software tools to aid the physical mapping of a genome has been developed and successfully applied to the genomic mapping of the fission yeast Schizosaccharomyces pombe. Two approaches were used for ordering single-copy hybridisation probes: one was based on the simulated annealing algorithm to order all probes, and another on inferring the minimum-spanning subset of the probes using a heuristic filtering procedure. Both algorithms produced almost identical maps, with minor differences in the order of repetitive probes and those having identical hybridisation patterns. A separate algorithm fitted the clones to the established probe order. Approaches for handling experimental noise and repetitive elements are discussed. In addition to these programs and the database management software, tools for visualizing and editing the data are described. The issues of combining the information from different libraries are addressed. Also, ways of handling multiple-copy probes and non-hybridisation data are discussed.  相似文献   

14.
Quantitative microscopy is a valuable tool for inferring molecular mechanisms of cellular processes such as clathrin-mediated endocytosis, but, for quantitative microscopy to reach its potential, both data collection and analysis needed improvement. We introduce new tools to track and count endocytic patches in fission yeast to increase the quality of the data extracted from quantitative microscopy movies. We present a universal method to achieve “temporal superresolution” by aligning temporal data sets with higher temporal resolution than the measurement intervals. These methods allowed us to extract new information about endocytic actin patches in wild-type cells from measurements of the fluorescence of fimbrin-mEGFP. We show that the time course of actin assembly and disassembly varies <600 ms between patches. Actin polymerizes during vesicle formation, but we show that polymerization does not participate in vesicle movement other than to limit the complex diffusive motions of newly formed endocytic vesicles, which move faster as the surrounding actin meshwork decreases in size over time. Our methods also show that the number of patches in fission yeast is proportional to cell length and that the variability in the repartition of patches between the tips of interphase cells has been underestimated.  相似文献   

15.
The fission yeast Schizosaccharomyces pombe is a useful model for analysing DNA replication as genetic methods to allow conditional inactivation of relevant proteins can provide important information about S-phase execution. A number of strategies are available to allow regulation of protein level or activity but there are disadvantages specific to each method and this may have limitations for particular proteins or experiments. We have investigated the utility of the inducible hormone-binding domain (HBD) system, which has been described in other organisms but little used in fission yeast, for the creation of conditional-lethal replication mutants. In this method, proteins are tagged with HBD and can be regulated with β-estradiol. In this article, we describe the application of this method in fission yeast, specifically with regard to analysis of the function of GINS, an essential component of the eukaryotic replicative helicase, the CMG complex.  相似文献   

16.
17.
MetaBasis     
We have developed an integrated web-based relational database information system, which offers an extensive search functionality of validated entries containing available bioinformatics computing resources. This system, called MetaBasis, aims to provide the bioinformatics community, and especially newcomers to the field, with easy access to reliable bioinformatics databases and tools. MetaBasis is focused on non-commercial and open-source software tools. AVAILABILITY: http://metabasis.bioacademy.gr/  相似文献   

18.

Background

The fission yeast Schizosaccharomyces pombe is widely-used as a model organism for the study of a broad range of eukaryotic cellular processes such as cell cycle, genome stability and cell morphology. Despite the availability of extensive set of genetic, molecular biological, biochemical and cell biological tools for analysis of protein function in fission yeast, studies are often hampered by the lack of an effective method allowing for the rapid regulation of protein level or protein activity.

Results

In order to be able to regulate protein function, we have made use of a previous finding that the hormone binding domain of steroid receptors can be used as a regulatory cassette to subject the activity of heterologous proteins to hormonal regulation. The approach is based on fusing the protein of interest to the hormone binding domain (HBD) of the estrogen receptor (ER). The HBD tag will attract the Hsp90 complex, which can render the fusion protein inactive. Upon addition of estradiol the protein is quickly released from the Hsp90 complex and thereby activated. We have tagged and characterised the induction of activity of four different HBD-tagged proteins. Here we show that the tag provided the means to effectively regulate the activity of two of these proteins.

Conclusion

The estradiol-regulatable hormone binding domain provides a means to regulate the function of some, though not all, fission yeast proteins. This system may result in very quick and reversible activation of the protein of interest. Therefore it will be a powerful tool and it will open experimental approaches in fission yeast that have previously not been possible. Since fission yeast is a widely-used model organism, this will be valuable in many areas of research.  相似文献   

19.
The requirements for bioinformatics resources to support genome research in farm animals is reviewed.The resources developed to meet these needs are described. Resource databases and associated tools have been developed to handle experimental data. Several of these systems serve the needs of multinational collaborations. Genome databases have been established to provide contemporary summaries of the status of genome maps in a range of farm and domestic animals along with experimental details and citations. New resources and tools will be required to address the informatics needs of emerging technologies such as microarrays. However, continued investment is also required to maintain the currency and utility of the current systems, especially the genome databases.  相似文献   

20.
With the burgeoning immunological data in the scientific literature, scientists must increasingly rely on Internet resources to inform and enhance their work. Here we provide a brief overview of the adaptive immune response and summaries of immunoinformatics resources, emphasizing those with Web interfaces. These resources include searchable databases of epitopes and immune-related molecules, and analysis tools for T cell and B cell epitope prediction, vaccine design, and protein structure comparisons. There is an agreeable synergy between the growing collections in immune-related databases and the growing sophistication of analysis software; the databases provide the foundation for developing predictive computational tools, which in turn enable more rapid identification of immune responses to populate the databases. Collectively, these resources contribute to improved understanding of immune responses and escape, and evolution of pathogens under immune pressure. The public health implications are vast, including designing vaccines, understanding autoimmune diseases, and defining the correlates of immune protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号