首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal ATPases comprise a wide variety of enzymes which are not uniformly distributed in different membrane preparations. Since purified vesicle fractions have Mg2+/Ca2+-ATPase, the purpose of the present study was to know whether such enzyme activities have a preferential concentration in a synaptic vesicle fraction in order to be used as markers for these organelles. Resorting to a procedure developed in this Institute, we fractionated the rat cerebral cortex by differential centrifugation following osmotic shock of a crude mitochondrial fraction and separated a purified synaptic vesicle fraction over discontinuous sucrose gradients. Mg2+/Ca2+-ATPase activities and ultrastructural studies of isolated fractions were carried out. It was observed that similar specific activities for Mg2+/Ca2+-ATPases were found in all fractions studied which contain synaptic vesicles and/or membranes. Although the present results confirm the presence of Mg2+ and Ca2+-ATPase activities in synaptic vesicles preparations, they do not favor the contention that Mg2+/Ca2+-ATPase is a good marker for synaptic vesicles.  相似文献   

2.
Summary In the mammalian distal colon, the surface epithelium is responsible for electrolyte absorption, while the crypts are the site of secretion. This study examines the properties of electrical potential-driven86Rb+ fluxes through K+ channels in basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon epithelium. We show that Ba2+-sensitive, Ca2+-activated K+ channels are present in both surface and crypt cell derived vesicles with half-maximal activation at 5×10–7 m free Ca2+. This suggests an important role of cytoplasmic Ca2+ in the regulation of the bidirectional ion fluxes in the colon epithelium.The properties of K+ channels in the surface cell membrane fraction differ from those of the channels in the crypt cell derived membranes. The peptide toxin apamin inhibits Ca2+-activated K+ channels exclusively in surface cell vesicles, while charybdotoxin inhibits predominantely in the crypt cell membrane fraction. Titrations with H+ and tetraethylammonium show that both high-and low-sensitive86Rb+ flux components are present in surface cell vesicles, while the high-sensitive component is absent in the crypt cell membrane fraction. The Ba2+-sensitive, Ca2+-activated K+ channels can be solubilized in CHAPS and reconstituted into phospholipid vesicles. This is an essential step for further characterization of channel properties and for identification of the channel proteins in purification procedures.  相似文献   

3.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3–5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 μm diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

4.
In order to study the conductances of the Sarcoplasmic Reticulum (SR) membrane, microsomal fractions from cardiac SR were isolated by differential and sucrose gradient centrifugations and fused into planar lipid bilayers (PLB) made of phospholipids. Using either KCl or K-gluconate solutions, a large conducting K+ selective channel was characterized by its ohmic conductance (152 pS in 150 mM K+), and the presence of short and long lasting subconducting states. Its open probability Po increased with depolarizing voltages, thus supporting the idea that this channel might allow counter-charge movements of monovalent cations during rapid SR Ca2+ release. An heterogeneity in the kinetic behavior of this channel would suggest that the cardiac SR K+ channels might be regulated by cytoplasmic, luminal, or intra SR membrane biochemical mechanisms. Since the behavior was not modified by variations of [Ca2+] nor by the addition of soluble metabolites such as ATP, GTP, cAMP, cGMP, nor by phosphorylation conditions on both sides of the PLB, a specific interaction with a SR membrane component is postulated. Another cation selective channel was studied in asymmetric Ca2+, Ba2+ or Mg2+-HEPES buffers. This channel displayed large conductance values for the above divalent cations 90, 100, and 40 pS, respectively. This channel was activated by µM Ca2+ while its Ca2+ sensitivity was potentiated by millimolar ATP. However Mg2+ and calmodulin modulated its gating behavior. Ca2+ releasing drugs such as caffeine and ryanodine increased its Po. All these features are characteristics of the SR Ca2+ release channel. The ryanodine receptor which has been purified and reconstituted into PLB, may form a cation selective pathway. This channel displays all the regulatory sites of the native cardiac SR Ca2+ release channel. However, when NA was used as charge carrier, multiple subconducting states were observed. In conclusion, the reconstitution experiments have yield a great deal of informations about the biochemical and biophysical events that may regulated the ionic flux across the SR membrane.  相似文献   

5.
Previously it demonstrated that in the absence of Ca2+ entry, evoked secretion occurs neither by membrane depolarization, induction of [Ca2+] i rise, nor by both combined (Ashery, U., Weiss, C., Sela, D., Spira, M. E., and Atlas, D. (1993). Receptors Channels 1:217–220.). These studies designate Ca2+ entry as opposed to [Ca2+] i rise, essential for exocytosis. It led us to propose that the channel acts as the Ca2+ sensor and modulates secretion through a physical and functional contact with the synaptic proteins. This view was supported by protein–protein interactions reconstituted in the Xenopus oocytes expression system and release experiments in pancreatic cells (Barg, S., Ma, X., Elliasson, L., Galvanovskis, J., Gopel, S. O., Obermuller, S., Platzer, J., Renstrom, E., Trus, M., Atlas, D., Streissnig, G., and Rorsman, P. (2001). Biophys. J.; Wiser, O., Bennett, M. K., and Atlas, D. (1996). EMBO J. 15:4100–4110; Wiser, O., Trus, M., Hernandez, A., Renström, E., Barg, S., Rorsman, P., and Atlas, D. (1999). Proc. Natl. Acad. Sci. U.S.A. 96:248–253). The kinetics of Cav1.2 (Lc-type) and Cav2.2 (N-type) Ca2+ channels were modified in oocytes injected with cRNA encoding syntaxin 1A and SNAP-25. Conserved cysteines (Cys271, Cys272) within the syntaxin 1A transmembrane domain are essential. Synaptotagmin I, a vesicle-associated protein, accelerated the activation kinetics indicating Cav2.2 coupling to the vesicle. The unique modifications of Cav1.2 and Cav2.2 kinetics by syntaxin 1A, SNAP-25, and synaptotagmin combined implied excitosome formation, a primed fusion complex of the channel with synaptic proteins. The Cav1.2 cytosolic domain Lc753–893, acted as a dominant negative modulator, competitively inhibiting insulin release of channel-associated vesicles (CAV), the readily releasable pool of vesicles (RRP) in islet cells. A molecular mechanism is offered to explain fast secretion of vesicles tethered to SNAREs-associated Ca2+ channel. The tight arrangement facilitates the propagation of conformational changes induced during depolarization and Ca2+-binding at the channel, to the SNAREs to trigger secretion. The results imply a rapid Ca2+-dependent CAV (RRP) release, initiated by the binding of Ca2+ to the channel, upstream to intracellular Ca2+ sensor thus establishing the Ca2+ channel as the Ca2+ sensor of neurotransmitter release.  相似文献   

6.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

7.
Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10–7 to 10–3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.This work was supported by research grants from the National Institutes of Health HL13870 and AR38970, and the Texas Affiliate of the American Heart Association, 91A-188. M. Fill was the recipient of an NIH fellowship AR01834.  相似文献   

8.
M. Piñeros  M. Tester 《Planta》1995,195(4):478-488
A new mechanism for calcium flux in wheat (Triticum aestivum L.) root cells has been characterized. Membrane vesicles were enriched in plasma membrane using aqueous-polymer two-phase partitioning and incorporated into artificial lipid bilayers, allowing characterization of single channels under voltage-clamp conditions. Membrane marker activities showed 74% and 83% purity in plasma membrane when expressed in terms of membrane area and activity, respectively. Since membrane vesicles obtained by aqueous-polymer two-phase partitioning yield a population of membrane vesicles of regular orientation, and vesicle fusion into planar lipid bilayers occurs in a defined manner, the orientation of the channel upon vesicle incorporation could be determined. Thus ionic activities and potentials could be controlled appropriately on what we propose to be the cytosolic (trans) and extracellular (cis) faces of the channel. The unitary conductance in symmetrical 1 mM CaCl2 was 27±0.4 (pS). The correlation between the theoretical and observed reversal potentials in asymmetrical conditions showed that the channel was highly selective for Ca2+ over Cl. Experiments simulating physiological ionic conditions showed a PCa 2+/PK + of 17–26, decreasing in this range as the extracellular CaCl2 concentration increased from 0.1 to 1 mM. The channel was also permeable to the essential nutrient ions, Mg2+ and Mn2+. The open probability of the channel was strongly dependent on the membrane potential. Inactivation with time was observed at more negative membrane potentials, and was immediately reversed as soon as the membrane potential was decreased. At membrane potentials more negative than -130mV, the channel remained mainly in the closed state, suggesting that in vivo the channel would remain largely closed and would open only upon membrane depolarization. The channel was blocked by micromolar concentrations of extracellular verapamil and trivalent cations, Al3+ being the most effective of those tested. Exposure of the cytosolic and extracellular sides of the channel to inositol 1,4,5-trisphosphate had no effect on the channel activity. We suggest a plasma-membrane origin for the channel as shown by biochemical and electrophysiological evidence, and discuss possible physiological roles of this channel, both in Ca2+ uptake into roots and in signal transduction.Abbreviations IP3 1,4,5-trisphosphate - PM plasma membrane We wish to thank Dr. Christa Niemietz, Dr. Robert Reid and Prof. Andrew Smith for valuable discussions. This work was supported by the Australian Research Council and an OPRS award to M.P.  相似文献   

9.
10.
11.
Ca2+ released from the sarcoplasmic reticulum (SR) via ryanodine receptor type 2 (RYR2) is the key determinant of cardiac contractility. Although activity of RYR2 channels is primary controlled by Ca2+ entry through the plasma membrane, there is growing evidence that Ca2+ in the lumen of the SR can also be effectively involved in the regulation of RYR2 channel function. In the present study, we investigated the effect of luminal Ca2+ on the response of RYR2 channels reconstituted into a planar lipid membrane to caffeine and Ca2+ added to the cytosolic side of the channel. We performed two sets of experiments when the channel was exposed to either luminal Ba2+ or Ca2+. The given ion served also as a charge carrier. Luminal Ca2+ effectively shifted the EC50 for caffeine sensitivity to a lower concentration but did not modify the response of RYR2 channels to cytosolic Ca2+. Importantly, luminal Ca2+ exerted an effect on channel gating kinetics. Both the open and closed dwell times were considerably prolonged over the whole range (response to caffeine) or the partial range (response to cytosolic Ca2+) of open probability. Our results provide strong evidence that an alteration of the gating kinetics is the result of the interaction of luminal Ca2+ with the luminally located Ca2+ regulatory sites on the RYR2 channel complex.  相似文献   

12.
Summary A barium-sensitive Ca-activated K+ channel in the luminal membrane of the tubule cells in thick ascending limb of Henle's loop is required for maintenance of the lumen positive transepithelial potential and may be important for regulation of NaCl reabsorption. In this paper we examine if the K+ channel can be solubilized and reconstituted into phospholipid vesicles with preservation of its native properties. The K+ channel in luminal plasma membrane vesicles can be quantitatively solubilized in CHAPS at a detergent/protein ratio of 3. For reconstitution, detergent is removed by passage over a column of Sephadex G 50 (coarse). K+-channel activity is assayed by measurement of86Rb+ uptake against a large opposing K+ gradient. The reconstituted K+ channel is activated by Ca2+ in the physiological range of concentration (K1/22×10–7 m at pH 7.2) as found for the K+ channel in native plasma membrane vesicles and shows the same sensitivity to inhibitors (Ba2+, trifluoperazine, calmidazolium, quinidine) and to protons. Reconstitution of the K+ channel into phospholipid vesicles with full preservation of its native properties is an essential step towards isolation and purification of the K+-channel protein.Titration with Ca2+ shows that most of the active K+ channels in reconstituted vesicles have their cytoplasmic aspect facing outward in contrast to the orientation in plasma membrane vesicles, which requires also addition of Ca2+ ionophore in order to observe Ca2+ stimulation. The reconstituted K+ channel is highly sensitive to tryptic digestion. Brief digestion leads to activation of the K+ channel in absence of Ca2+, to the level of activity seen with saturating concentrations of Ca2+. This tryptic split is located in a cytoplasmic aspect of the K+ channel that appears to be involved in opening and closing the K+ channel in response to Ca2+ binding.  相似文献   

13.
Single CNS neurons could be dissociated with adherent functional synaptic boutons without using any enzyme, namely when preparing a “synaptic bouton.” This allows experimenters to investigate the effects of presynaptic modulators of synaptic transmission with unprecedented case and accuracy. Moreover, a single bouton can be visualized using fluorescent markers and can also be focally stimulated with electrical pulses. In this communication, high voltage-dependent Ca2+ channels of nerve endings, as one of experimental examples using the “synaptic bouton” preparation, are described. Ca2+ channels belonging to different subtypes, which trigger GABA release from nerve terminals (boutons) projecting to rat hippocampal CA1 pyramidal neurons, were studied. GABA-ergic evoked inhibitory postsynaptic currents (eIPSCs) were recorded; these currents were evoked by focal stimulation of single boutons in mechanically dissociated neurons and by stimulation of a nerve bundle in slice preparations. Nilvadipine, an L-type Ca2+ channel blocker, completely inhibited eIPSCs evoked by stimulation of single boutons but exerted no effect on eIPSCs evoked by low-frequency stimulation of the nerve bundle. Nilvadipine did, however, prevent potentiation of the eIPSC amplitude following high-frequency stimulation of the nerve bundles in slice preparations. ω-Conotoxin-GVIA, an N-type Ca2+ channel blocker, and ω-Agatoxin-IVA, a P/Q-type Ca2+ channel blocker, completely inhibited the eIPSCs in 33.3 and 83.3% of the recordings from single boutons, respectively. In response to low-frequency nerve bundle stimulation in the slice preparation, both ω-Conotoxin-GVIA and ω-Agatoxin-IVA partially reduced the amplitude of eIPSC, and the residual component could be abolished by Cd2+. From these results, the following hypotheses could be drawn. (i) The distribution of P/Q- and N-type Ca2+ channels at a single bouton is nonuniform; (ii) when a focal stimulation is applied to a single bouton, L-type Ca2+ channels play a significant role in generation of action potentials, which subsequently activate P/Q- and N-type Ca2+ channels at GABA release sites; and (iii) action potentials conducted through axons in the slice preparation are sufficient to depolarize the bouton membrane, even when L-type Ca2+ channels are suppressed. Neirofiziologiya/Neurophysiology, Vol. 37, No. 2, pp. 181–183, March–April, 2005.  相似文献   

14.
In skeletal and cardiac muscle, contraction is initiated by the rapid release of Ca2+ ions from the intracellular membrane system, sarcoplasmic reticulum. Rapid-mixing vesicle ion flux and planar lipid bilayer-single-channel measurements have shown that Ca2+ release is mediated by a high-conductance, ligand-gated Ca2+ channel. Using the Ca2+ release-specific probe ryanodine, a 30 S protein complex composed of four polypeptides ofM r 400,000 has been isolated. Reconstitution of the purified skeletal and cardiac muscle 30 S complexes into planar lipid bilayers induced single Ca2+ channel currents with conductance and gating kinetics similar to those of native Ca2+ release channels. Electron microscopy revealed structural similarity with the protein bridges (feet) that span the transverse-tubule-sarcoplasmic reticulum junction. These results suggest that striated muscle contains an intracellular Ca2+ release channel that is identical with the ryanodine receptor and the transverse-tubule-sarcoplasmic reticulum spanning feet structures.  相似文献   

15.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

16.
The docking of synaptic vesicles on the presynaptic membrane and their priming for fusion with it to mediate synaptic transmission of nerve impulses typically occur at structurally specialized regions on the membrane called active zones. Stable components of active zones include aggregates of macromolecules, ‘active zone material’ (AZM), attached to the presynaptic membrane, and aggregates of Ca2+-channels in the membrane, through which Ca2+ enters the cytosol to trigger impulse-evoked vesicle fusion with the presynaptic membrane by interacting with Ca2+-sensors on the vesicles. This laboratory has used electron tomography to study, at macromolecular spatial resolution, the structure and function of AZM at the simply arranged active zones of axon terminals at frog neuromuscular junctions. The results support the conclusion that AZM directs the docking and priming of synaptic vesicles and essential positioning of Ca2+-channels relative to the vesicles'' Ca2+-sensors. Here we review the findings and comment on their applicability to understanding mechanisms of docking, priming and Ca2+-triggering at other synapses, where the arrangement of active zone components differs.  相似文献   

17.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the BK channel are enriched at the presynaptic nerve terminal, where CaMKII associates with synaptic vesicles whereas the BK channel colocalizes with voltage-sensitive Ca2+ channels in the plasma membrane. Mounting evidence suggests that these two proteins play important roles in controlling neurotransmitter release. Presynaptic BK channels primarily serve as a negative regulator of neurotransmitter release. In contrast, presynaptic CaMKII either enhances or inhibits neurotransmitter release and synaptic plasticity depending on experimental or physiological conditions and properties of specific synapses. The different functions of presynaptic CaMKII appear to be mediated by distinct downstream proteins, including the BK channel.  相似文献   

18.
To determine if their properties are consistent with a role in regulation of transepithelial transport, Ca2+-activated K+ channels from the basolateral plasma membrane of the surface cells in the distal colon have been characterized by single channel analysis after fusion of vesicles with planar lipid bilayers. A Ca2+-activated K+ channel with a single channel conductance of 275 pS was predominant. The sensitivity to Ca2+ was strongly dependent on the membrane potential and on the pH. At a neutral pH, the K 0.5 for Ca2+ was raised from 20nm at a potential of 0 mV to 300nm at –40 mV. A decrease in pH at the cytoplasmic face of the K+ channel reduced the Ca2+ sensitivity dramatically. A loss of the high sensitivity to Ca2+ was also observed after incubation with MgCl2, possibly a result of dephosphorylation of the channels by endogenous phosphatases. Modification of the channel protein may thus explain the variation in Ca2+ sensitivity between studies on K+ channels from the same tissue. High affinity inhibition (K 0.5=10nm) by charybdotoxin of the Ca2+-activated K+ channel from the extracellular face could be lifted by an outward flux of K+ through the channel. However, at the ion gradients and potentials found in the intact epithelium, charybdotoxin should be a useful tool for examination of the role of maxi K+ channels. The high sensitivity for Ca2+ and the properties of the activator site are in agreement with an important regulatory role for the high conductance K+ channel in the epithelial cells.Dr. E. Moczydlowsky, Yale University School of Medicine, New Haven, CT, and Dr. Per Stampe, Brandeis University, Waltham, MA, are thanked for introduction to the bilayer technique. Tove Soland is thanked for excellent technical assistance. This work was supported by the Novo Nordisk Foundation, the Carlsberg Foundation, the Danish Medical Research Council, and the Austrian Research Council.  相似文献   

19.
Summary Ca2+-induced Ca2+ release at the terminal cisternae of skeletal sarcoplasmic reticulum was demonstrated using heavy sarcoplasmic reticulum vesicles. Ca2+ release was observed at 10 m Ca2+ in the presence of 1.25mm free Mg2+ and was sensitive to low concentrations of ruthenium red and was partially inhibited by valinomycin. These results suggest that the Ca2+-induced Ca2+ release is electrogenic and that an inside negative membrane potential created by the Ca2+ flux opens a second channel that releases Ca2+. Results in support of this formulation were obtained by applying a Cl gradient or K+ gradient to sarcoplasmic reticulum vesicles to initiate Ca2+ release. Based on experiments the following hypothesis for the excitation-contraction coupling of skeletal muscle was formulated. On excitation, small amounts of Ca2+ enter from the transverse tubule and interact with a Ca2+ receptor at the terminal cisternae and cause Ca2+ release (Ca2+-induced Ca2+ release). This Ca2+ flux generates an inside negative membrane potential which opens voltage-gated Ca2+ channels (membrane potential-dependent Ca2+ release) in amounts sufficient for contraction.  相似文献   

20.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号