首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
为了提高西洋参不定根的诱导率和生长速度,该研究以西洋参鲜根为外植体,在基本培养基的基础上优化IBA、碳源、氮源和磷源等营养成分。结果表明:西洋参不定根诱导过程可以明显分为外植体脱分化(愈伤化)、再分化(根形成)和根伸长等三个阶段; MS基本培养基更有利于西洋参不定根的诱导,可能与MS培养基中矿质元素含量高有关;当培养基中IBA浓度达到2 mg·L~(-1)时,外植体表面上不定根分布密度大,诱导率达到(96±3.5)%;培养基中添加蔗糖到30 g·L~(-1)时,不定根的诱导效果最好,但继续提高浓度后不定根变短、直径变粗;培养基中NO_3~-∶NH_4~+和PO_4~(3-)浓度分别为20∶10(总氮量30 mmol·L~(-1))和25.0mmol·L~(-1)时,西洋参不定根诱导率达到最大。结果提示优化培养条件可以显著改善西洋参不定根的诱导和生长,为后续西洋参不定根规模化培养提供理论支持。  相似文献   

2.
Podophyllum peltatum is an important medicinal plant that produces podophyllotoxin (PTOX) with anti-cancer properties. We established the embryogenic cell and adventitious root culture systems in P. peltatum and analyzed PTOX production. For the growth of embryogenic cell clumps in shake flask culture, the most efficient concentration of 2,4-dichloroacetic acid (2,4-D) was 6.78 μM, and the growth of embryogenic cell clumps was 15.9-fold increased in Murashige and Skoog MS liquid medium with 6.78 μM 2,4-D after 3 wk of culture. To induce adventitious roots, half-strength MS medium showed the best results for adventitious root induction compared to full strength MS medium and MS medium lacking NH4NO3. Optimal indole-3-butyric acid concentration for adventitious root formation was 14.78 μM. In liquid medium, the frequency of adventitious root formation from root segments was 87.7% and the number of laterally formed adventitious roots was 22.3 per segment. PTOX production in embryogenic cells and adventitious roots was confirmed by liquid chromatography and electrospray ionization–tandem mass spectrometry analysis. High-performance liquid chromatography analysis revealed that adventitious roots contained higher PTOX than embryogenic cell clumps. Elicitor treatment (20 μM methyl jasmonate) strongly enhanced the production of PTOX in both embryogenic cell clumps and adventitious roots. This observation suggests that both embryogenic cell and adventitious root culture can be adopted to produce PTOX.  相似文献   

3.
Cotyledon expiants ofPanax ginseng were cultured on modified Murashige and Skoog medium with various concentrations of NH4C1 and KNO,. Morphogenesis such as somatic embryo, embryogenic callus, or adventitious root formation from cotyledon expiants differently occurred according to the concentrations of NH/ and NO3. Somatic embryos were actively formed in a moderate concentration of NH4 + (20 mM) in combination of NO3, but in a high concentration of NH4 + (60 mM), only embryogenie calli were formed. In little or no NH4 +, adventitious roots were formed at a high rate. The influence of NO3 on those morphogenesis was slight but combination of NO3 with NH4 + was indispensable since the cotyledon expiants were necrotized on medium containing only NH4 + as a nitrogen source. Histological observation revealed that somatic embryo and embryogénie callus formation occurred from the same origin (cotyledon epidermis), whereas, adventitious roots were originated from the cells near vascular strands.  相似文献   

4.
Root segments from seedlings of Panax ginseng produced adventitious roots directly when cultured on 1/2 MS solid medium lacking NH4NO3 and containing 3.0 mg l−1 IBA. Using this adventitious root formation, we developed rapid and efficient transgenic root formation directly from adventitious root segments in P. ginseng. Root segments were co-cultivated with Agrobacterium tumefaciens (GV3101) caring β-glucuronidase (GUS) gene. Putative transgenic adventitious roots were formed directly from root segments on medium with 400 mg l−1 cefotaxime and 50 mg l−1 kanamycin. Kanamycin resistant adventitious roots were selected and proliferated as individual lines by subculturing on medium with 300 mg l−1 cefotaxime and 50 mg l−1 kanamycin at two weeks subculture interval. Frequency of transient and stable expression of GUS gene was enhanced by acetosyringon (50 mg l−1) treatment. Integration of transgene into the plants was confirmed by the X-gluc reaction, PCR and Southern analysis. Production of transgenic plants was achieved via somatic embryogenesis from the embryogenic callus derived from independent lines of adventitious roots. The protocol for rapid induction of transgenic adventitious roots directly from adventitious roots can be applied for a new Agrobacterium tumefaciens-mediated genetic transformation protocol in P. ginseng.  相似文献   

5.
We investigated the effects on ginseng adventitious root growth and ginsenoside production when macro-element concentrations and nitrogen source were manipulated in the culture media. Biomass growth was greatest in the medium supplemented with 0.5-strength NH4PO3, whereas ginsenoside accumulation was highest (9.90 mg g-1 DW) in the absence of NH4PO3. At levels of 1.0-strength KNO3, root growth was maximum, but a 2.0 strength of KNO3 led to the greatest ginsenoside content (9.85 mg g-l). High concentrations of MgSO4 were most favorable for both root growth and ginsenoside accumulation (up to 8.89 mg g-1 DW). Root growth and ginsenoside content also increased in proportion to the concentration of CaCI2 in the medium, with the greatest accumulation of ginsenoside (8.91 mg g-1 DW) occurring at a 2.0 strength. The NH4/NO3 -- ratio also influenced adventitious root growth and ginsenoside production; both parameters were greater when the NO3 - concentration was higher than that of NH4 +. Maximum root growth was achieved at an NH4 +/NO3 - ratio of 7.19/18.50, while ginsenoside production was greatest (83.37 mg L-1) when NO3 - was used as the sole N source.  相似文献   

6.
The present study investigated the effect of nitrogen source (NH4+; NO3) at different concentrations on the accumulation of biomass and secondary metabolites in adventitious root cultures of Hypericum perforatum L. Cultures were initiated in shake flasks by using half-strength Murashige and Skoog (MS) medium with B5 vitamins, 1.0 mg l−1 indole-3-butyric acid, 0.1 mg l−1 kinetin, 3% (w/v) sucrose, and different ratios of ammonium and nitrate (0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM, using NH4Cl and KNO3). The cultures were maintained in darkness. The medium supplemented with 5:25 (mM) NH4+/NO3 resulted in the optimum accumulation of biomass and total phenols and flavonoids. The antioxidant potential of a methanolic extract, measured as the 1, 1-diphenyl-2-picrylhydrazyl and 2, 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, of H. perforatum adventitious roots showed that antioxidant activity was high from root extracts that were grown on higher concentrations of NO3 nitrogen (15, 20, and 25 mM). Further, assessment of hydrogen peroxide (H2O2) and malondialdehyde content of the root extracts revealed that cultures supplemented with higher levels of NO3 nitrogen (15–30 mM) were under oxidative stress, which boosted the levels of secondary metabolites in the adventitious roots. These results suggest that optimal adventitious root biomass could be achieved with the supplementation of cultures with 5:25 ratios of MS nitrogen sources.  相似文献   

7.
We investigated the influence of an increased inorganic carbon supply in the root medium on NO?3 uptake and assimilation in seedlings of Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were pre-grown for 4 to 7 days with 0 or 100 mM NaCl in hydroponic culture using 0.2 mM NO?3 (group A) or 0.2 mM NH+4 (group B) as nitrogen source. The nutrient solution for group A plants was aerated with air or with air containing 4 800 μumol mol?1 CO2. Nitrate uptake rate and root and leaf malate contents in these plants were determined. The plants of group B were subdivided into two sets. Plants of one set were transferred either to N-free solution containing 0 or 5 mM NaHCO3, or to a medium containing 2 mM NO?3 and 5 mM NaHCO3. Both sets of group B plants were grown for 12 h in darkness prior to 2 h of illumination, and were assayed for malate content and NO?3 uptake rate (only for plants grown in N-free solution). The second set of group B plants was labeled with 14C by a 1-h pulse of H14CO?3 which was added to a 5 mM NaHCO3 solution containing 0 or 100 mM NaCl and 0 or 2 mM NO?3, and 14C-assimilates were extracted and fractionated. The roots of group B plants growing in carbonated medium accumulated twice as much malate as did control plants. This malate was accumulated only when NO?3 was absent from the root medium. Both a high level of root malate and aeration with CO2-enriched air stimulated NO?3 uptake. Analysis of 14C-assimilates indicated that with no NO?3 in the medium, the 14C was present mainly in organic acids, whereas with NO?3, a large proportion of 14C was incorporated into amino acids. Transport of root-incorporated 14C to the shoot was enhanced by NO?3, while the amino acid fraction was the major 14C-assimilates in the shoot. It is concluded that inorganic carbon fixed through phosphoenolpyruvate carboxylase (EC 4.1.1.31) in roots of tomato plants may have two fates: (a) as a carbon skeleton for amino acid synthesis; and (b) to accumulate, mainly as malate, in the roots, in the absence of a demand for the carbon skeleton. Inorganic carbon fixation in the root provides carbon skeletons for the assimilation of the NH+4 resulting from NO3 reduction, and the subsequent removal of amino acids through the xylem. This ‘removal’ of NO?3 from the cytoplasm of the root cells may in turn increase NO?3 uptake.  相似文献   

8.
The effect of two N-forms (NH4 + and NO3 ) and NaCl on pattern of accumulation of some essential inorganic nutrients was examined in sunflower (Helianthus annuus L.) cv. Hisun 33. Eight-day-old plants of were subjected for 21 d to Hoagland's nutrient solution containing 8 mM N as NH4 + or NO3 ·, and salinized with and addition of NaCl to the growth medium had no significant effect on total leaf N. However, root N of NH4-supplied plants decreased significantly with increase in NaCl concentration, whereas that of NO3-supplied plants remained unaffected. There was no significant effect of NaCl on leaf or root P, but the NO3-supplied plants had significa concentration of leaf P than that of NH4-supplied plants at varying salt treatments. Salinity of the rooting med did not show any significant effect on Na+ concentrations of leaves or roots of plants subjected to two differen N. NH4-treated plants generally had greater concentrations of Cl in leaves and roots and lower K+ content in leaves than NO3-supplied plants. Ca2+ concentrations of leaves and roots and Mg2+ concentrations of leaves decreased in NH4-supplied plants due to NaCl, but they remained unaffected in NO3-treated plants.  相似文献   

9.
Cotyledon explants of Panax ginseng produced somatic embryos directly on solid hormone-free MS medium containing 3% (w/v) sucrose while high concentration of NH4NO3 (60 mM) induced embryogenic callus. Ten subcultures of the embryogenic callus on hormone-free MS medium with 40 mM NH4NO3 gave hormone-independent proliferation of callus, which exhibited proliferation potential even on MS medium with a standard level of NH4NO3 (20 mM). Pulse treatment of callus with exogenous auxin or cytokinin (1.0 mg 1–1 2,4-D, 1.0 mg 1–1 kinetin) resulted in the loss of the hormone-independent characteristic and caused the callus to brown. For the suspension culture, embryogenic callus was transferred to MS liquid medium containing 3% (w/v) sucrose in an 500 ml Erlenmyer flask. Embryogenic cell clumps in full-strength MS liquid medium discharged toxic substances, resulting in strong suppression of cell growth. In 1/3-strength MS medium, exudation of toxic material did not occur. Embryogenic cell clumps were mass-grown on a large-scale in a bioreactor (20-1), showing a 7.1 increase of fresh weight in 1/3-strength MS medium with 3% (w/ v) sucrose after 5 weeks of culture. Total ginsenoside content of cultured embryogenic cell clumps was low and 6 times below naturally-cultivated ginseng roots.  相似文献   

10.
In this study, adventitious roots of Panax quinquefolium L. have been successfully established. The highest induction rate of roots was obtained in MS medium containing 3 mg L?1 IBA after 4 weeks of culture. The culture conditions of adventitious root were optimized and evaluated with response surface methodology. The best culture conditions for root growth seemed to be 0.75 salt strength MS medium, 4.70 g L?1 inoculum size and 40 days of culture. The active component contents of adventitious roots were compared with those of native roots. The total saponins content was found to be 16.28 mg g?1 in native root and 4.64 mg g?1 in adventitious root. The polysaccharide content of the adventitious root was 1.5 times higher than that in the native P. quinquefolium (30.54 vs. 20.28 mg g?1).  相似文献   

11.
Abstract. Profiles of self-generated ion currents associated with the growing primary root tips of intact Hordeum vulgare L. and Trifolium repens L. (nonnodulated) seedlings were measured using a highly sensitive vibrating electrode in media containing NH+4 or NO-3, and compared to control roots growing in nitrogen free media. Under these three nutrient regimes, positive current entered the root at regions corresponding to the meristematic tissues and main elongation zones of root tips and left from the mature root tissues. Mapping the surface of the roots with a pH-sensitive microelectrode revealed regions of external alkalinity where positive electrical current entered the root, and external acidity where positive current exited. The correlation between pH-profile and the pattern of ion current generation in these experiments suggests that H+ ions were responsible for carrying the bulk of the root-generated current. Assimilation of NHJ results in net H+ extrusion while assimilation of NO-3, results in net OH-3 efflux. Growth on NH+4, as compared to growth on NO-3, stimulated the magnitude of the electrical current but did not affect significantly the growth rate of the roots. However, despite the differing stresses on internal pH regulation that arise due to growth on the two exogenous forms of combined nitrogen, the current profiles were qualitatively similar under the different conditions that were examined. The role of the circulating proton current is not yet known; however, the constancy of the current profile under different nutrient regimes sustains the hypothesis that the current may have a role in the regulation of root polarity.  相似文献   

12.
The present work deals with optimization of adventitious shoot culture of Bacopa monnieri for the production of biomass and bacoside A and has investigated the effects of macro elements (NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4) and nitrogen source [NH4 +/NO3 ] of Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium (MS) on accumulation of biomass and bacoside A content. Optimum number of adventitious shoots (99.33 shoots explant−1), fresh weight (1.841 g) and dry weight (0.150 g) were obtained in the medium with 2.0× strength of NH4NO3. The highest production of bacoside A content was also recorded in the medium of 2.0× NH4NO3, which produced 17.935 mg g−1 DW. The number of adventitious shoot biomass and bacoside A content were optimum when the NO3 concentration was higher than that of NH4 +. Maximum number of shoots (70.00 shoots explant−1), biomass (fresh weight 1.137 g and dry weight 0.080 g) and also bacoside A content (27.106 mg g−1 DW) were obtained at NH4 +/NO3 ratio of 14.38/37.60 mM. Overall, MS medium supplemented with 2.0× NH4NO3 is recommended for most efficient bacoside A production.  相似文献   

13.
Calli from hypocotyl and root explants of Digitalis obscura L. showed regeneration of adventitious shoots, roots and embryos when transferred to Murashige & Skoog medium supplemented with cytokinins alone or in combination with auxins. Optimum shoot-bud formation was achieved in the presence of IAA and BA, while roots mainly appeared either in absence of growth regulators or with IAA and Kn. Embryo formation took place only in those combinations that included Kn. Embryo development was influenced by the type of auxin, and precocious germination occurred in media with NAA. Mechanically isolated cells from hypocotyl- and root-derived calli were plated in MS medium supplemented with several IAA and BA combinations. Single cells were able to proliferate forming callus within 20–30 days in culture. In order to induce organogenesis, calli were transferred to various regeneration media. Shoot-bud differentiation efficiency depended on both callus origin and medium initially used for cell culture, best results being obtained in calli grown from hypocotyl-derived cells cultured in the presence of casein hydrolysate. A further subculture to medium containing coconut milk and lower concentrations of NH4NO3 and sucrose promoted shoot development. Rooting was readily achieved upon transferring shoots onto half-strength MS medium. Plantlets were ultimately established in soil.Abbreviations BA benzyladenine - BM basal medium - CH casein hydrolysate - CM coconut milk - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid - Kn kinetin - MS Murashige & Skoog - NAA naphthaleneacetic acid  相似文献   

14.
Cultures of adventitious roots of Stevia rebaudiana (Bert.) Bertoni were performed in a roller bottle system for the production of both primary and secondary metabolites. Adventitious roots were induced from 1-cm-long root tip explants derived from in vitro regenerated plantlets on solid Murashige and Skoog (MS 1962) media supplemented with 10.7 μM of α-naphthaleneacetic acid. These cultures were successfully maintained in the same medium for 6 months with regular subcultures after 4 weeks. Thereafter, the roots were cut into 1.0- to 1.5-cm-long segments and transferred to the roller bottle system containing a fresh root tissue culture on liquid MS medium supplemented with 10.7 μM NAA. The apparatus consisted of a flask rolling system adjusted to 4g, and 3° of flask inclination. The roots were allowed to grow in the absence of light for adaptation and adventitious root formation. The best conditions for cultivation were investigated, considering culture volume (25 ml), culture period (4 weeks), salt concentrations in the nutrient medium (33%) and optimal initial inoculum (0.2 g) of S. rebaudiana roots. These results could give important information on how to improve the development of adventitious roots of S. rebaudiana for the production of primary and secondary metabolites.  相似文献   

15.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

16.
Root growth as a function of ammonium and nitrate in the root zone   总被引:7,自引:1,他引:6  
We examined the effect of soil NH4+ and NO3? content upon the root systems of field-grown tomatoes, and the influence of constant, low concentrations of NH4+ or NO3? upon root growth in solution culture. In two field experiments, few roots were present in soil zones with low extractable NH4+ or NO3?; they increased to a maximum in zones having 2μg-N NO3? g?1 soil and 6 μg-N NO3= g?1 soil, but decreased in zones having higher NH4+ or NO3? levels. Root branching was relatively insensitive to available mineral nitrogen. Plants maintained in solution culture at constant levels of NH4+ or NO3?, had similar shoot biomass, but all root parameters – biomass, length, branching and area – were greater under NH4 nutrition than under NO3?. These results suggest that the size of root system depends on a functional equilibrium between roots and shoots (Brouwer 1967) and on the balance between soil NH4+ and NO3?.  相似文献   

17.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

18.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

19.
InMucuna pruriens var.utilis, grown with nitrate-N in a hydroponic split-root system, an Al avoidance reaction of root growth was observed, which was ascribed to local P stress in the Al containing compartment. The Al avoidance reaction was similar to the avoidance ofMucuna roots of acid subsoil in the field where roots grew preferentially in the topsoil. In the present paper the effect of different N forms (NO3 and NH4 +) on the reactions ofMucuna to Al were studied, since in acid soils N is present as a mixture of NO3 and NH4 +. No interaction between the N form and Al toxicity was found. A hydroponic split-root experiment with NH4NO3 nutrition, which is comparable to the situation in the field, showed that under these conditions Al avoidance did not occur. It is concluded that a relation between the Al avoidance reaction ofMucuna and P stress is still likely.Abbreviations Dr root diameter - Lpr total root length per plant - Lrw specific root length - NRA nitrate reductase activity - S/R shoot: root ratio  相似文献   

20.
In vitro plant regeneration of Agave fourcroydes Lem. (Agavaceae) is described. Results suggest that the NO3 -:NH4 + balance in the culture medium is a key factor controlling callus growth and organogenesis in rhizome cultures. Stem callus showed limited organogenic capacity, but high cytokinin concentrations induced adventitious shoot formation on stem explants. When these shoots were excised and subcultured, new callus formed at their base from which new shoots arose. The shoots from stem explants and rhizome callus formed extensive root systems in vitro and were transferred to pot culture with a 90% survival rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号