首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The angiogenic inducer Cyr61 is an extracellular matrix-associated heparin-binding protein that can mediate cell adhesion, stimulate cell migration, and enhance growth factor-stimulated DNA synthesis in both fibroblasts and endothelial cells in culture. In vivo, Cyr61 induces neovascularization and promotes tumor growth. Cyr61 is a prototypic member of a highly conserved family of secreted proteins that includes connective tissue growth factor, nephroblastoma overexpressed, Elm-1/WISP-1, Cop-1/WISP-2, and WISP-3. Encoded by an immediate early gene, Cyr61 synthesis is induced by serum growth factors in cultured fibroblasts and in dermal fibroblasts during cutaneous wound healing. We previously demonstrated that Cyr61 mediates adhesion of vascular endothelial cells and activation-dependent adhesion of blood platelets through direct interaction with integrins alpha(V)beta(3) and alpha(IIb)beta(3), respectively. In this study, we show that the adhesion of primary human skin fibroblasts to Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans (HSPGs), which most likely serve as co-receptors. Either destruction of cell surface HSPGs or prior occupancy of the Cyr61 heparin-binding site completely blocked cell adhesion to Cyr61. A heparin-binding defective mutant of Cyr61 was unable to mediate fibroblast adhesion through integrin alpha(6)beta(1) but still mediated endothelial cell adhesion through integrin alpha(V)beta(3), indicating that endothelial cell adhesion through integrin alpha(V)beta(3) is independent of the heparin-binding activity of Cyr61. These results identify Cyr61 as a novel adhesive substrate for integrin alpha(6)beta(1) and provide the first demonstration of the requirement for HSPGs in integrin-mediated cell attachment. In addition, these findings suggest that Cyr61 might elicit disparate biological effects in different cell types through interaction with distinct integrin receptors.  相似文献   

2.
Cyr61 and connective tissue growth factor (CTGF), members of a newly identified family of extracellular matrix-associated signaling molecules, are found to mediate cell adhesion, promote cell migration and enhance growth factor-induced cell proliferation in vitro, and induce angiogenesis in vivo. We previously showed that vascular endothelial cell adhesion and migration to Cyr61 and Fisp12 (mouse CTGF) are mediated through integrin alpha(v)beta(3). Both Cyr61 and Fisp12/mCTGF are present in normal blood vessel walls, and it has been demonstrated that CTGF is overexpressed in advanced atherosclerotic lesions. In the present study, we examined whether Cyr61 and Fisp12/mCTGF could serve as substrates for platelet adhesion. Agonist (ADP, thrombin, or U46619)-stimulated but not resting platelets adhered to both Cyr61 and Fisp12/mCTGF, and this process was completely inhibited by prostaglandin I(2), which prevents platelet activation. The specificity of Cyr61- and Fisp12/mCTGF-mediated platelet adhesion was demonstrated by specific inhibition of this process with polyclonal anti-Cyr61 and anti-Fisp12/mCTGF antibodies, respectively. The adhesion of ADP-activated platelets to both proteins was divalent cation-dependent and was blocked by RGDS, HHLGGAKQAGDV, or echistatin, but not by RGES. Furthermore, this process was specifically inhibited by the monoclonal antibody AP-2 (anti-alpha(IIb)beta(3)), but not by LM609 (anti-alpha(v)beta(3)), indicating that the interaction is mediated through integrin alpha(IIb)beta(3). In a solid phase binding assay, activated alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to immobilized Cyr61 and Fisp12/mCTGF in a dose-dependent and RGD-inhibitable manner. In contrast, unactivated alpha(IIb)beta(3) failed to bind to either protein. Collectively, these findings identify Cyr61 and Fisp12/mCTGF as two novel activation-dependent adhesive ligands for the integrin alpha(IIb)beta(3) on human platelets, and implicate a functional role for these proteins in hemostasis and thrombosis.  相似文献   

3.
CYR61, an angiogenic factor and a member of the CCN protein family, is an extracellular matrix-associated, heparin-binding protein that mediates cell adhesion, promotes cell migration, and enhances growth factor-stimulated cell proliferation. CYR61 induces angiogenesis and promotes tumor growth in vivo and is expressed in dermal fibroblasts during cutaneous wound healing. It has been demonstrated recently that adhesion of primary skin fibroblasts to CYR61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans, resulting in adhesive signaling and up-regulation of matrix metalloproteinases 1 and 3. CYR61 is composed of four discrete structural domains that bear sequence similarities to the insulin-like growth factor-binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a carboxyl-terminal (CT) domain that resembles cysteine knots found in some growth factors. In this study, we show that a CYR61 mutant (CYR61DeltaCT) that has the CT domain deleted is unable to support adhesion of primary human skin fibroblasts but is still able to stimulate chemotaxis and enhance basic fibroblast growth factor-induced mitogenesis similar to wild type. In addition, fibroblast migration to CYR61 is mediated through integrin alpha(v)beta(5) but not integrins alpha(6)beta(1) or alpha(v)beta(3). Furthermore, we show that CYR61 binds directly to purified integrin alpha(v)beta(5) in vitro. By contrast, CYR61 enhancement of basic fibroblast growth factor-induced DNA synthesis is mediated through integrin alpha(v)beta(3), a known receptor for CYR61 that mediates CYR61-dependent cell adhesion and chemotaxis in vascular endothelial cells. Thus, CYR61 promotes primary human fibroblast adhesion, migration, and mitogenesis through integrins alpha(6)beta(1), alpha(v)beta(5), and alpha(v)beta(3), respectively. Together, these findings establish CYR61 as a novel ligand for integrin alpha(v)beta(5) and show that CYR61 interacts with distinct integrins to mediate disparate activities in a cell type-specific manner.  相似文献   

4.
CYR61 (CCN1) is an extracellular matrix-associated protein of the CCN family, which also includes CTGF (CCN2), NOV (CCN3), WISP-1 (CCN4), WISP-2 (CCN5), and WISP-3 (CCN6). Purified CYR61 induces neovascularization in corneal implants, and Cyr61-null mice suffer embryonic death due to vascular defects, thus establishing that CYR61 is an important regulator of angiogenesis. Aberrant expression of Cyr61 is associated with breast cancer, wound healing, and vascular diseases such as atherosclerosis and restenosis. In culture, CYR61 functions through integrin-mediated pathways to promote cell adhesion, migration, and proliferation. Here we show that CYR61 can also promote cell survival and tubule formation in human umbilical vein endothelial cells. Furthermore, we have dissected the integrin receptor requirements of CYR61 with respect to its pro-angiogenic activities. Thus, CYR61-induced cell adhesion and tubule formation occur through interaction with integrin alpha(6)beta(1) in early passage endothelial cells in which integrins have not been activated. By contrast, in endothelial cells in which integrins are activated by phorbol ester or vascular endothelial growth factor, CYR61-promoted cell adhesion, migration, survival, growth factor-induced mitogenesis, and endothelial tubule formation are all mediated through integrin alpha(v)beta(3). These findings indicate that CYR61 is an activation-dependent ligand of integrin alpha(v)beta(3) and an activation-independent ligand of integrin alpha(6)beta(1) and that these integrins differentially mediate the pro-angiogenic activities of CYR61. These findings help to define the mechanisms by which CYR61 acts as an angiogenic regulator, provide a molecular interpretation for the loss of vascular integrity and increased apoptosis of vascular cells in Cyr61-null mice, and underscore the importance of CYR61 in the development and homeostasis of the vascular system.  相似文献   

5.
6.
The angiogenic inducer CCN1 (cysteine-rich 61, CYR61), a secreted matricellular protein of the CCN family, is a ligand of multiple integrins, including alpha 6 beta 1. Previous studies have shown that CCN1 interaction with integrin alpha 6 beta 1 mediates adhesion of fibroblasts, endothelial cells, and smooth muscle cells, as well as migration of smooth muscle cells. Recently, we have reported that CCN1-induced tubule formation of unactivated endothelial cells is also mediated through integrin alpha 6 beta 1. In this study, we demonstrate that human skin fibroblasts adhere specifically to the T1 sequence (GQKCIVQTTSWSQCSKS) within domain III of CCN1, and this process is blocked by anti-alpha 6 and anti-beta 1 monoclonal antibodies. Alanine substitution mutagenesis of the T1 sequence further defines the sequence TTSWSQCSKS as the critical determinant for mediating alpha 6 beta 1-dependent adhesion. Soluble T1 peptide specifically inhibits fibroblast adhesion to CCN1 in a dose-dependent manner. Furthermore, T1 also inhibits cell adhesion to other alpha 6 beta 1 ligands, including CCN2 (CTGF), CCN3 (NOV), and laminin, but not to ligands of other integrins. In addition, T1 specifically inhibits alpha 6 beta 1-dependent tubule formation of unactivated endothelial cells in a CCN1-containing collagen gel matrix. To confirm that T1 binds integrin alpha 6 beta 1 directly, we perform affinity chromatography and show that integrin alpha 6 beta 1 is isolated from an octylglucoside extract of fibroblasts on T1-coupled Affi-gel. Taken together, these findings define the T1 sequence in CCN1 as a novel binding motif for integrin alpha 6 beta 1, providing the basis for the development of peptide mimetics to examine the functional role of alpha 6 beta 1 in angiogenesis.  相似文献   

7.
The novel angiogenic inducer CCN3 (NOV, nephroblastoma overexpressed) is a matricellular protein of the CCN family, which also includes CCN1 (CYR61), CCN2 (CTGF), CCN4 (WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). CCN3 is broadly expressed in derivatives of all three germ layers during mammalian development, and its deranged expression is associated with vascular injury and a broad range of tumors. We have shown that CCN3 promotes proangiogenic activities in vascular endothelial cells through integrin receptors and induces neovascularization in vivo (Lin, C. G., Leu, S. J., Chen, N., Tebeau, C. M., Lin, S. X., Yeung, C. Y., and Lau, L. F. (2003) J. Biol. Chem. 278, 24200-24208). In this study, we show that CCN3 is highly expressed in granulation tissue of cutaneous wounds 5-7 days after injury and is capable of inducing responses in primary fibroblasts consistent with wound healing. Purified CCN3 supports primary skin fibroblast adhesion through integrins alpha(5)beta(1) and alpha(6)beta(1) and induces fibroblast chemotaxis through integrin alpha(v)beta(5). We show that CCN3 is a novel ligand of alpha(v)beta(5) in a solid phase binding assay. Although not mitogenic on its own, CCN3 also enhances basic fibroblast growth factor-induced DNA synthesis. Furthermore, CCN3 up-regulates MMP-1 and PAI-1 expression but interacts with TGF-beta1 in an antagonistic or synergistic manner to regulate the expression of specific genes. These findings, together with its angiogenic activity, support a role for CCN3 in cutaneous wound healing in skin fibroblasts and establish its matricellular mode of action through integrin receptors.  相似文献   

8.
9.
Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.  相似文献   

10.
Angiogenesis is a complex process regulated by the interactions of endothelial cells with cytokines and the adhesive protein matrix. The cytokines basic fibroblast growth factor (bFGF) and tumor necrosis factor-alpha (TNF-alpha) are two of the modulators of angiogenesis. One mechanism by which these cytokines induce their effects may be through the regulation of integrin adhesion receptor activity, in particular, alpha(v)beta(3). In this study, we examined the ability of these angiogenic factors to modulate the adhesion of human umbilical vein endothelial cells (HUVECs) to immobilized disintegrins (i.e., rhodostomin and arietin), which are specific in antagonizing integrin alpha(v)beta(3) in cells. As these disintegrins were immobilized as substrates, they acted as agonists to induce HUVEC adhesion in a dose- and alpha(v)beta(3)-dependent manner. In addition, adhesion also triggered a sustained increase of intracellular free calcium. Furthermore, bFGF-primed HUVECs potentiated, but TNF-alpha primed cells attenuated, about 50% adhesion events and calcium signaling triggered by immobilized disintegrin compared to naive cells, respectively. The mechanisms of modulating alpha(v)beta(3)-dependent HUVEC adhesion by cytokines may be related to changes of integrin alpha(v)beta(3) conformation, as demonstrating the antagonistic effect of Mn(2+) on decreased adhesion by TNF-alpha pretreatment, and confirmed with flow cytometric analysis probed by anti-LIBS1 mAb. However, cytokine pretreatment did not alter the expression of this integrin on the cell surface, as determined by flow cytometry. Phosphoinositide-3 kinase may be one of the signaling molecules involved in the enhanced adhesion of bFGF-primed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号