首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Replacement of an amino acid residue at position 130 -Gly by Cys- in the primary structure of Staphylococcus aureus alpha-toxin decreases the single-channel conductance induced by the toxin in planar lipid bilayers. Concomitantly, the pH value at which the channel becomes unable to discriminate between Cl and K+ ions is also decreased. By contrast, the pH dependence of the efficiency of the mutant toxin to form ion channels in lipid bilayers was unchanged (maximum efficiency at pH 5.5–6.0). The asymmetry and nonlinearity of the current-voltage characteristics of the channel were increased by the point mutation but the diameter of the water pore induced by the mutant toxin, evaluated in lipid bilayers and in erythrocyte membranes, was found to be indistinguishable from that formed by wild-type toxin and equal to 2.4–2.6 nm. Alterations at the ``trans mouth' were found to be responsible for all observed changes of the channel properties. This mouth is situated close to the surface of the second leaflet of a bilayer lipid membrane. The data obtained allows us to propose that the region around residue 130 in fact determines the main features of the ST-channel and takes part in the formation of the trans entrance of the channel. Received: 8 September 1995/Revised: 20 November 1996  相似文献   

2.
In an effort to increase our understanding of the molecular rearrangements that occur during lipid bilayer fusion, we have used different fluorescent probes to characterize the lipid rearrangements associated with poly(ethylene glycol) (PEG)-mediated fusion of DOPC:DL(18:3)PC (85:15) small, unilamellar vesicles (SUVs). Unlike in our previous studies of fusion kinetics [Lee, J., and Lentz, B. R., Biochemistry 36, 6251-6259], these vesicles have mean diameters of 20 nm compared to 45 nm. Surprisingly, we found significant inter-vesicle lipid mixing at 5 wt % PEG, well below the PEG concentration required (17.5 wt %) for vesicles fusion. Lipid movement rate between bilayers (or inter-leaflet movement) increased abruptly at 10 wt % PEG, and the rate of lipid mixing increased thereafter with increasing amounts of PEG. The characteristic time of lipid mixing between outer leaflets (tau approximately equal to 24 s) was comparable to that observed at and above PEG concentrations needed to induce fusion (17.5 wt %) of either 20 or 45 nm vesicles. We also found that slower lipid mixing (tau approximately equal to 267 s) between fusing vesicles occurred on the same time scale or slightly faster than vesicle contents mixing (tau approximately equal to 351 s). In addition, our measurements showed that lipids redistributed across the bilayer on a time scale just slightly faster than pore formation (tau approximately equal to 217 s). This is the first demonstration of trans-bilayer movement of lipids during fusion. We also found that water was excluded from the bilayer (tau approximately equal to 475 s) during product maturation. These observations suggest that fusion in smaller vesicles (approximately 20 nm) proceeds via a multistep mechanism similar to that we reported for somewhat larger vesicles, except that two intermediates are no longer clearly resolved.  相似文献   

3.
A method of soft poration of lipid bilayer was suggested, which is based on the structural rearrangement of lipid bilayer formed from disaturated phospholipids on the phase transition from liquid crystalline state to the gel. As opposed to the widely used method of electropbration, this method allows one to obtain a lipid pore population without application of high electric field. In the case of soft poration, the electric field does not exceed the physiological level of 10-100 mV. It was shown that, in planar bilayer lipid membranes formed from dipalmitoylphosphatidylcholine in water solution of 1 M LiCl, there appear up to 10 lipid pores in 1 min per 1 mm of membrane surface with an average conductivity of a pore of 31 +/- 13 nS. The average pore radius estimated using soluble polyethylene glycols ranged between 1.05-1.63 nm. Monovalent cation conductivity of a single lipid pore on soft poration was shown to decrease in the order Li+ > or = Na+ > K+ = Rb+ > or = Cs+. This order coincides with that observed by Marra and Israilashvili for dipalmitoylphosphatidylcholine-water interbilayer where the repulsive hydration force contribution is significant.  相似文献   

4.
Changes in ionic permeability of bilayer lipid membranes (BLM) from dipalmitoyl phosphatidylcholine at temperature of phase transition in 1 M LiCl solution in the presence of polyethyleneglycols (PEG) of various molecular masses are studied. The transition of ionic membrane channels from conducting to blocked nonconducting state using polymers makes it possible to calibrate lipid pores. It is shown that low-molecular weight glycerol and PEG with molecular weights of 300 and 600 decrease the amplitude of current fluctuations through the membrane, the decrease being proportional to the size of the polymer molecule incorporated. The addition of PEG with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. The result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as PEG with molecular masses of 6000 and 20000, which are hardly incorporated in the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of PEG. It is assumed that a complete blockade of the conductivity of lipid ionic channels by PEG with molecular masses of 1450, 2000, and 3350 is due to dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic one.  相似文献   

5.
The mechanism underlying the shark repellency of SDS was studied by comparing it with the shark nonrepelling detergent, Triton X-100. The findings can be summarized as follows: (1) The effective concentration of SDS for termination of shark tonic immobility (an immediate and fast response) was close to its critical micellar concentration in sea water (70 microM). The fish lethal concentrations (LD50) were far below the CMC value for SDS, and at CMC level for Triton X-100. (2) In sea water SDS possesses a strong affinity for lipid membranes, expressed in a lipid sea water partition coefficient (Kp) of about 3000. (3) In liposomal systems examined by assays of turbidity, fluorescence resonance energy transfer and kinetics of carboxyfluorescein (CF) release, the pattern of SDS induced changes in the phospholipid bilayer suggests: (a) absence of vesicle-vesicle fusion; (b) occurrence of vesicle size increase, and (c) nonlytic gradual release of CF above and below its CMC values. In contrast, Triton X-100 above its CMC induces membrane solubilization. (4) Assays coupling CF release from liposomes to potassium diffusion potential induced by valinomycin indicate that SDS related CF release can also be attributed to a specific mechanism such as cation pore formation and not only to membrane solubilization. The hypothesis of pore formation by SDS is discussed.  相似文献   

6.
Hydration of polyethylene glycol-grafted liposomes.   总被引:2,自引:0,他引:2       下载免费PDF全文
This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG2000 binds 136 +/- 4 molecules of water. For PEG2000 covalently attached to the lipid molecules organized in micelles, the water binding increases to 210 +/- 6 water molecules. This demonstrates that the two different structural configurations of the PEG2000, a random coil in the case of the free PEG and a brush in the case of DHP-PEG2000 micelles, differ in their hydration level. Ultrasound absorption changes in liposomes reflect mainly the heterophase fluctuations and packing defects in the lipid bilayer. The PEG-induced excess ultrasound absorption of the lipid bilayer at 7.7 MHz for PEG-lipid concentrations over 5 mol % indicates the increase in the relaxation time of the headgroup rotation due to PEG-PEG interactions. The adiabatic compressibility (calculated from ultrasound velocity and density) of the lipid bilayer of the liposome increases monotonically with PEG-lipid concentration up to approximately 7 mol %, reflecting release of water from the lipid headgroup region. Elimination of this water, induced by grafted PEG, leads to a decrease in bilayer defects and enhanced lateral packing of the phospholipid acyl chains. We assume that the dehydration of the lipid headgroup region in conjunction with the increase of the hydration of the outer layer by grafting PEG in brush configuration are responsible for increasing thermodynamic stability of the liposomes at 5-7 mol % of PEG-lipid. At higher PEG-lipid concentrations, compressibility and partial volume of the lipid phase of the samples decrease. This reflects the increase in hydration of the lipid headgroup region (up to five additional water molecules per lipid molecule for 12 mol % PEG-lipid) and the weakening of the bilayer packing due to the lateral repulsion of PEG chains.  相似文献   

7.
Stochastic model for electric field-induced membrane pores. Electroporation   总被引:10,自引:0,他引:10  
Electric impulses (1-20 kV cm-1, 1-5 microseconds) cause transient structural changes in biological membranes and lipid bilayers, leading to apparently reversible pore formation ( electroporation ) with cross-membrane material flow and, if two membranes are in contact, to irreversible membrane fusion ( electrofusion ). The fundamental process operative in electroporation and electrofusion is treated in terms of a periodic lipid block model, a block being a nearest-neighbour pair of lipid molecules in either of two states: (i) the polar head group in the bilayer plane or (ii) facing the centre of a pore (or defect site). The number of blocks in the pore wall is the stochastic variable of the model describing pore size and stability. The Helmholtz free energy function characterizing the transition probabilities of the various pore states contains the surface energies of the pore wall and the planar bilayer and, if an electric field is present, also a dielectric polarization term (dominated by the polarization of the water layer adjacent to the pore wall). Assuming a Poisson process the average number of blocks in a pore wall is given by the solution of a non-linear differential equation. At subcritical electric fields the average pore size is stationary and very small. At supercritical field strengths the pore radius increases and, reaching a critical pore size, the membrane ruptures (dielectric breakdown). If, however, the electric field is switched off, before the critical pore radius is reached, the pore apparently completely reseals to the closed bilayer configuration (reversible electroporation ).  相似文献   

8.
In contrast to the widely used method of electroporation, the method of soft perforation of lipid bilayers is proposed. It is based on the structural rearrangement of the lipid bilayer formed from disaturated phospholipids at the temperature of the phase transition from the liquid crystalline state to the gel state. This allows us to obtain a lipid pore population without the use of a strong electric field. It is shown that the planar lipid bilayer membrane (pBLM) formed from dipalmitoylphosphatidylcholine in 1 M LiCl aqueous solution exhibits the appearance of up to 50 lipid pores per 1 mm2 of membrane surface, with an average single pore conductivity of 31±13 nS. The estimation of a single pore radius carried out with water-soluble poly(ethylene glycol)s (PEGs) showed that the average pore radius ranged between 1.0–1.7 nm. It was found experimentally that PEG-1450, PEG-2000, and PEG-3350 should be in a position to block the single pore conductivity completely, while PEG-6000 fully restored the ionic conductivity. The similarity of these PEG effects to ionic conductivity in protein pores makes it possible to suggest that the partition of the PEG molecules between the pore and the bulk solution does not depend on the nature of the chemical groups located in the pore wall.  相似文献   

9.
Summary The three types of porin (matrix-proteins) fromSalmonella typhimurium with molecular weights of 38,000, 39,000 and 40,000 were reconstituted with lipid bilayer membranes either as a trimer or as an oligomer (complex I). The specific conductance of the membranes increased several orders of magnitude after the addition of the porins into the aqueous phase bathing the membranes. A linear relationship between protein concentration in the aqueous phase and membrane conductance was found. In the case of lower protein concentrations (10–12 m), the conductance increased in a stepwise fashion with a single conductance increment of 2.3 nS in 1m KCl. For a given salt the conductance increment was found to be largely independent of the particular porin (38 K, 39K or 40 K) and on the state of aggregation, although porin oligomers showed an up to 10 times smaller conductance increase in macroscopic conductance measurements. The conductance pathway has an ohmic current voltage characteristic and a poor selectivity for different alkali ions. Further information on the structure of the pores formed by the different porins fromSalmonella was obtained from the selectivity for various ions. From the permeability of the pore for large ions (Tris+, glucosamine+, Hepes_ a minimum pore diameter of 0.8 nm is estimated. This value is in agreement with the size of the pore as calculated from the conductance data for 1m KCl (1.4 nm for a pore length of 7.5 nm). The pore diameter may well account for the sugar permeability which has been found in reconstituted vesicles. The findings reported here are consistent with the assumption that the different porins form large aqueous channels in the lipid bilayer membranes and that the single condutance unit is a trimer. In addition, it is suggested that one trimer contains only one pore rather than a bundle of pores.  相似文献   

10.
Reconstitution experiments were performed on lipid bilayer membranes in the presence of detergent-solubilized mitochondrial outer membranes of a porin-free yeast mutant and of its parent strain. The addition of the detergent-solubilized material resulted in a strong increase in the membrane conductance which was not observed if only the detergent was added to the aqueous phase. Surprisingly, the membrane conductance induced by the detergent extracts of the mutant membrane was only a factor of 20 less than that caused by the outer membrane of the parent strain under otherwise identical conditions. Single-channel recordings of lipid bilayer membranes in the presence of mitochondrial outer membranes of the yeast mutant suggested the presence of a transient pore. The reconstituted pores had a single-channel conductance of 0.21 nS in 0.1 M KCl and the characteristics of general diffusion pores with an estimated effective diameter of 1.2 nm. The pores present in the mitochondrial outer membranes of the yeast mutant shared some similarities with the pores formed by mitochondrial and bacterial porins although their effective diameter is much smaller than those of the 'normal' mitochondrial porins which have a single-channel conductance of about 0.4 nS in 0.1 M KCl, corresponding to an effective diameter of 1.7 nm. Zero-current membrane-potential measurements suggested that the second mitochondrial porin is slightly cation-selective. Its possible role in the metabolism of mitochondria is discussed.  相似文献   

11.
Planar lipid bilayer membranes are formed from mixtures of pure lipids in the absence of non-biological solvents. The solventless bilayers are characterized by a large specific capacitance (586-957 nF/cm2) comparable to that of cell membranes but considerably greater than that of conventional lipid/decane bilayers. Hydrocarbon solvents, such as n-alkanes or squalene, thicken the bilayer. Membrane dielectric thickness is used as an indicator of bilayer lipid composition. For membranes made from pure monoglyceride/triglyceride mixtures the thickness of the solventless lipid bilayer is independent of both the chain length (11-22 carbons) and mol fraction (0.1-0.9) of triglyceride in the bulk mixture. In contrast, the thickness of the bilayer (2.0-3.3 nm) depends strongly upon the length (16-24 carbons) of the monoglyceride component. Molecular volume considerations lead to the conclusion that the bulk lipid mixture disproportionates to yield bilayer membranes composed of nearly pure monoglyceride. The dielectric thickness of the monoglyceride bilayer is consistent with the notion that the lipid fatty acyl chains are fluid.  相似文献   

12.
Polyethylene glycol (PEG) and sorbitol (ST) have each been used inosmotically induced water stress studies in plants, however, these osmotica maynot have equivalent effects in plants. The present study was designed to examinewhether antioxidant enzyme responses in rice leaves are different for PEG and STof osmotic potential –1.5 MPa. As judged by relative watercontent, PEG treatment resulted in a higher degree of water stress in riceleaves than ST treatment. PEG treatment markedly increased lipid peroxidation,judged by malondialdehyde content, in rice leaves. However, ST treatment had noeffect on lipid peroxidation. An increase in peroxidase (POX), ascorbateperoxidase (APX) and glutathione reductase (GR) activities was observed in riceleaves treated with ST. PEG treatment had no effect on POX and APX activitiesand decreased GR activity in rice leaves. The decrease in superoxide dismutaseactivity induced by PEG was more pronounced than by ST. Cycloheximide blockedthe enhanced activities of POX, APX and GR by ST, indicating de novo synthesisof the enzymes. Results suggest that ST but not PEG treatment can up-regulateantioxidant system in rice leaves.  相似文献   

13.
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.  相似文献   

14.
Asymmetrical (one-sided) application of penetrating water-soluble polymers, polyethylene glycols (PEGs), to a well-defined channel formed by Staphylococcus aureus alpha-toxin is shown to probe channel pore geometry in more detail than their symmetrical (two-sided) application. Polymers added to the cis side of the planar lipid membrane (the side of protein addition) affect channel conductance differently than polymers added to the trans side. Because a satisfactory theory quantitatively describing PEG partitioning into a channel pore does not exist, we apply the simple empirical rules proposed previously (, J. Membr. Biol. 161:83-92) to gauge the size of pore openings as well as the size and position of constrictions along the pore axis. We estimate the radii of the two openings of the channel to be practically identical and equal to 1. 2-1.3 nm. Two apparent constrictions with radii of approximately 0. 9 nm and approximately 0.6-0.7 nm are inferred to be present in the channel lumen, the larger one being closer to the cis side. These structural findings agree well with crystallographic data on the channel structure (, Science. 274:1859-1866) and verify the practicality of polymer probing. The general features of PEG partitioning are examined using available theoretical considerations, assuming there is no attraction between PEG and the channel lumen. It is shown that the sharp dependence of the partition coefficient on polymer molecular weight found under both symmetrical and asymmetrical polymer application can be rationalized within a "hard sphere nonideal solution model." This finding is rather surprising because PEG forms highly flexible coils in water with a Kuhn length of only several Angstroms.  相似文献   

15.
The mechanism of membrane permeabilization by the antimicrobial peptide distinctin was investigated by using two different mercury-supported biomimetic membranes, namely a lipid self-assembled monolayer and a lipid bilayer tethered to the mercury surface through a hydrophilic spacer (tethered bilayer lipid membrane: tBLM). Incorporation of distinctin into a lipid monolayer from its aqueous solution yields rapidly ion channels selective toward inorganic cations, such as Tl(+) and Cd(2+). Conversely, its incorporation in a tBLM allows the formation of ion channels permeable to potassium ions only at non-physiological transmembrane potentials, more negative than -340mV. These channels, once formed, are unstable at less negative transmembrane potentials. The kinetics of their formation is consistent with the disruption of distinctin clusters adsorbed on top of the lipid bilayer, incorporation of the resulting monomers and their aggregation into hydrophilic pores by a mechanism of nucleation and growth. Comparing the behavior of distinctin in tBLMs with that in conventional black lipid membranes strongly suggests that distinctin channel formation in lipid bilayer requires the partitioning of distinctin molecules between the two sides of the lipid bilayer. We can tentatively hypothesize that an ion channel is formed when one distinctin cluster on one side of the lipid bilayer matches another one on the opposite side.  相似文献   

16.
Molecular dynamics simulations were performed on a two-component lipid bilayer system in the liquid crystalline phase at constant pressure and constant temperature. The lipid bilayers were composed of a mixture of neutral galactosylceramide (GalCer) and charged dipalmitoylphosphatidylglycerol (DPPG) lipid molecules. Two lipid bilayer systems were prepared with GalCer:DPPG ratio 9:1 (10%-DPPG system) and 3:1 (25%-DPPG system). The 10%-DPPG system represents a collapsed state lipid bilayer, with a narrow water space between the bilayers, and the 25%-DPPG system represents an expanded state with a fluid space of approximately 10 nm. The number of lipid molecules used in each simulation was 1024, and the length of the production run simulation was 10 ns. The simulations were validated by comparing the results with experimental data for several important aspects of the bilayer structure and dynamics. Deuterium order parameters obtained from (2)H NMR experiments for DPPG chains are in a very good agreement with those obtained from molecular dynamics simulations. The surface area per GalCer lipid molecule was estimated to be 0.608 +/- 0.011 nm(2). From the simulated electron density profiles, the bilayer thickness defined as the distance between the phosphorus peaks across the bilayer was calculated to be 4.21 nm. Both simulation systems revealed a tendency for cooperative bilayer undulations, as expected in the liquid crystalline phase. The interaction of water with the GalCer and DPPG oxygen atoms results in a strong water ordering in a spherical hydration shell and the formation of hydrogen bonds (H-bonds). Each GalCer lipid molecule makes 8.6 +/- 0.1 H-bonds with the surrounding water, whereas each DPPG lipid molecule makes 8.3 +/- 0.1 H-bonds. The number of water molecules per GalCer or DPPG in the hydration shell was estimated to be 10-11 from an analysis of the radial distribution functions. The formation of the intermolecular hydrogen bonds was observed between hydroxyl groups from the opposing GalCer sugar headgroups, giving an energy of adhesion in the range between -1.0 and -3.4 erg/cm(2). We suggest that this value is the contribution of the hydrogen-bond component to the net adhesion energy between GalCer bilayers in the liquid crystalline phase.  相似文献   

17.
Summary Single-channel analysis of electrical fluctuations induced in planar bilayer membranes by the purified human complement proteins C5b6, C7, C8, and C9 have been analyzed. Reconstitution experiments with lipid bilayer membranes showed that the C5b-9 proteins formed pores only if all proteins were present at one side of the membrane. The complement pores had an average single-channel conductance of 3.1 nS at 0.15m KCl. The histogram of the complement pores suggested a substantial variation of the size of the single channel. The linear relationship between single-channel conductance at fixed ionic strength and the aqueous mobility of the ions in the bulk aqueous phase indicated that the ions move inside the complement pore in a manner similar to the way they move in the aqueous phase. The minimum diameter of the pores as judged from the conductance data is approximately 3 nm. The complement channels showed no apparent voltage control or regulation up to transmembrane potentials of 100 mV. At neutral pH the pore is three to four times more permeable for alkali ions than for chloride, which may be explained by the existence of fixed negatively charged groups in or near the pore. The significance of these observations to current molecular models of the membrane lesion formed by these cytolytic serum proteins is considered.  相似文献   

18.
The extracellular surface of the gap junction cell-to-cell channels was imaged in phosphate-buffered saline with an atomic force microscope. The fully hydrated isolated gap junction membranes adsorbed to mica were irregular sheets approximately 1-2 microns across and 13.2 (+/- 1.3) nm thick. The top bilayer of the gap junction was dissected by increasing the force applied to the tip or sometimes by increasing the scan rate at moderate forces. The exposed extracellular surface revealed a hexagonal array with a center-to-center spacing of 9.4 (+/- 0.9) nm between individual channels (connexons). Images of individual connexons with a lateral resolution of < 3.5 nm, and in the best case approximately 2.5 nm, were reliably and reproducibly obtained with high-quality tips. These membrane channels protruded 1.4 (+/- 0.4) nm from the extracellular surface of the lipid membrane, and the atomic force microscope tip reached up to 0.7 nm into the pore, which opened up to a diameter of 3.8 (+/- 0.6) nm on the extracellular side.  相似文献   

19.
The effect of the homogenates from different developmental stages of the nematode Protostrongylus rufescens on mitochondrial and lipid bilayer membranes has been studied. The homogenate of P. rufescens affects efficiently the cell energy by the inhibition of the mitochondrial respiration in the metabolic state V3, uncouples oxidative phosphorylation and affects the functions of mitochondria at the level of cyclosporine A-sensitive pore by making it highly permeable. Moreover, the nematode homogenate at the concentration of 1 mkg/ml increases efficiently the integral permeability of lipid bilayer membranes. An increase in this permeability is connected apparently with the formation of single ion channels. The channels of lipid bilayer membranes induced by the nematode homogenate show cation selectivity.  相似文献   

20.
The action of the 107 kDa hemolysin from Escherichia coli on planar lipid membranes was investigated. We report that a single toxin molecule can form a cation-selective, ion-permeable channel of large conductance in a planar phospholipid bilayer membrane. The conductance of the pore is proportional to that of the bulk solution, indicating that the channel is filled with water. A pore diameter of about 2 nm can be evaluated. The pore formation mechanism is voltage-dependent and essentially resembles that of pore-forming colicins; this implies that opening of the channel is dependent on transfer of an electrical charge through the membrane. We propose that the physiological effects of E. coli hemolysin result from its ability to form ion channels in the membrane of attacked cells, and show that there is quantitative agreement between the effects of this toxin on model membranes and its hemolytic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号