首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Activation of D1-like receptors (D1 and/or D5) induces antioxidant responses; however, the mechanism(s) involved in their antioxidant actions are not known. We hypothesized that stimulation of the D5 receptor inhibits NADPH oxidase activity, and thus the production of reactive oxygen species (ROS). We investigated this issue in D5 receptor-deficient (D5-/-) and wild-type (D5+/+) mice. NADPH oxidase protein expression (gp91(phox), p47(phox), and Nox 4) and activity in kidney and brain, as well as plasma thiobarbituric acid-reactive substances (TBARS) were higher in D5-/- than in D5+/+ mice. Furthermore, apocynin, an NADPH oxidase inhibitor, normalized blood pressure, renal NADPH oxidase activity, and plasma TBARS in D5-/- mice. In HEK-293 cells that heterologously expressed human D5 receptor, its agonist fenoldopam decreased NADPH oxidase activity, expression of one of its subunits (gp91(phox)), and ROS production. The inhibitory effect of the D5 receptor activation on NADPH oxidase activity was independent of cAMP/PKA but was partially dependent on phospholipase D2. The ability of D5 receptor stimulation to decrease ROS production may explain, in part, the antihypertensive action of D5 receptor activation.  相似文献   

3.
4.
The responses of human neutrophils (PMN) involve reorganization and phosphorylation of cytoskeletal components. We investigated the translocation of protein kinase C (PKC) isoforms to PMN cytoskeletal (Triton-insoluble) fractions, in conjunction with activation of the respiratory burst enzyme NADPH oxidase. In resting PMN, PKC-delta (29%) and small amounts of PKC-alpha (0.6%), but not PKC-betaII, were present in cytoskeletal fractions. Upon stimulation with the PKC agonist PMA, the levels of PKC-alpha, PKC-betaII, and PKC-delta increased in the cytoskeletal fraction, concomitant with a decrease in the noncytoskeletal (Triton-soluble) fractions. PKC-delta maximally associated with cytoskeletal fractions at 160 nM PMA and then declined, while PKC-alpha and PKC-betaII plateaued at 300 nM PMA. Translocation of PKC-delta was maximal by 2 min and sustained for at least 10 min. Translocation of PKC-alpha and PKC-betaII was biphasic, plateauing at 2-3 min and then increasing up to 10 min. Under maximal stimulation conditions, PKC isoforms were entirely cytoskeletal associated. Translocation of the NADPH oxidase component p47phox to the cytoskeletal fraction correlated with translocation of PKC-alpha and PKC-betaII, but not with translocation of PKC-delta. Oxidase activity in cytoskeletal fractions paralleled translocation of PKC-alpha, PKC-betaII, and p47phox. Stimulation with 1,2-dioctanoylglycerol resulted in little translocation of PKC isoforms or p47phox, and in minimal oxidase activity. We conclude that conventional PKC isoforms (PKC-alpha and/or PKC-betaII) may regulate PMA-stimulated cytoskeletal association and activation of NADPH oxidase. PKC-delta may modulate other PMN responses that involve cytoskeletal components.  相似文献   

5.
Using a phosphorylation-dependent cell-free system to study NADPH oxidase activation (McPhail, L. C., Qualliotine-Mann, D., and Waite, K. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7931-7935), we previously showed that p47(phox), a cytosolic NADPH oxidase component, is phosphorylated. Now, we show that p22(phox), a subunit of the NADPH oxidase component flavocytochrome b(558), also is phosphorylated. Phosphorylation is selectively activated by phosphatidic acid (PA) versus other lipids and occurs on a threonine residue in p22(phox). We identified two protein kinase families capable of phosphorylating p22(phox): 1) a potentially novel, partially purified PA-activated protein kinase(s) known to phosphorylate p47(phox) and postulated to mediate the phosphorylation-dependent activation of NADPH oxidase by PA and 2) conventional, but not novel or atypical, isoforms of protein kinase C (PKC). In contrast, all classes of PKC isoforms could phosphorylate p47(phox). In a gel retardation assay both the phosphatidic acid-dependent kinase and conventional PKC isoforms phosphorylated all molecules of p22(phox). These findings suggest that phosphorylation of p22(phox) by conventional PKC and/or a novel PA-activated protein kinase regulates the activation/assembly of NADPH oxidase.  相似文献   

6.
The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain. In order to better understand the structural basis accounting for the very weak ligand binding of the PKCθ C1a domain, we assessed the effect on ligand binding of twelve amino acid residues which differed between the C1a and C1b domains of PKCθ. Mutation of Pro9 of the C1a domain of PKCθ to the corresponding Lys9 found in C1b restored in vitro binding activity for [3H]phorbol 12,13-dibutyrate to 3.6 nM, whereas none of the other residues had substantial effect. Interestingly, the converse mutation in the C1b domain of Lys9 to Pro9 only diminished binding affinity to 11.7 nM, compared to 254 nM in the unmutated C1a. In confocal experiments, deletion of the C1b domain from full length PKCθ diminished, whereas deletion of the C1a domain enhanced 5-fold (at 100 nM PMA) the translocation to the plasma membrane. We conclude that the Pro168 residue in the C1a domain of full length PKCθ plays a critical role in the ligand and membrane binding, while exchanging the residue (Lys240) at the same position in C1b domain of full length PKCθ only modestly reduced the membrane interaction.  相似文献   

7.
Protein kinase C (PKC)-θ has been shown to be a critical TCR signaling molecule that promotes the activation and differentiation of naive T cells into inflammatory effector T cells. In this study, we demonstrate that PKC-θ-mediated signals inhibit inducible regulatory T cell (iTreg) differentiation via an AKT-Foxo1/3A pathway. TGF-β-induced iTreg differentiation was enhanced in PKC-θ(-/-) T cells or wild-type cells treated with a specific PKC-θ inhibitor, but was inhibited by the PKC-θ activator PMA, or by CD28 crosslinking, which enhances PKC-θ activation. PKC-θ(-/-) T cells had reduced activity of the AKT kinase, and the expression of a constitutively active form of AKT in PKC-θ(-/-) T cells restored the ability to inhibit iTreg differentiation. Furthermore, knockdown or overexpression of the AKT downstream targets Foxo1 and Foxo3a was found to inhibit or promote iTreg differentiation in PKC-θ(-/-) T cells accordingly, indicating that the AKT-Foxo1/3A pathway is responsible for the inhibition of iTreg differentiation of iTregs downstream of PKC-θ. We conclude that PKC-θ is able to control T cell-mediated immune responses by shifting the balance between the differentiation of effector T cells and inhibitory Tregs.  相似文献   

8.
The dopamine D(2) receptor (D(2)R) regulates renal reactive oxygen species (ROS) production, and impaired D(2)R function results in ROS-dependent hypertension. Paraoxonase 2 (PON2), which belongs to the paraoxonase gene family, is expressed in various tissues, acting to protect against cellular oxidative stress. We hypothesized that PON2 may be involved in preventing excessive renal ROS production and thus may contribute to maintenance of normal blood pressure. Moreover, D(2)R may decrease ROS production, in part, through regulation of PON2. D(2)R colocalized with PON2 in the brush border of mouse renal proximal tubules. Renal PON2 protein was decreased (-33±6%) in D(2)(-/-) relative to D(2)(+/+) mice. Renal subcapsular infusion of PON2 siRNA decreased PON2 protein expression (-55%), increased renal oxidative stress (2.2-fold), associated with increased renal NADPH oxidase expression (Nox1, 1.9-fold; Nox2, 2.9-fold; and Nox4, 1.6-fold) and activity (1.9-fold), and elevated arterial blood pressure (systolic, 134±5 vs 93±6mmHg; diastolic, 97±4 vs 65±7mmHg; mean 113±4 vs 75±7mmHg). To determine the relevance of the PON2 and D(2)R interaction in humans, we studied human renal proximal tubule cells. Both D(2)R and PON2 were found in nonlipid and lipid rafts and physically interacted with each other. Treatment of these cells with the D(2)R/D(3)R agonist quinpirole (1μM, 24h) decreased ROS production (-35±6%), associated with decreased NADPH oxidase activity (-32±3%) and expression of Nox2 (-41±7%) and Nox4 (-47±8%) protein, and increased expression of PON2 mRNA (2.1-fold) and protein (1.6-fold) at 24h. Silencing PON2 (siRNA, 10nM, 48h) not only partially prevented the quinpirole-induced decrease in ROS production by 36%, but also increased basal ROS production (1.3-fold), which was associated with an increase in NADPH oxidase activity (1.4-fold) and expression of Nox2 (2.1-fold) and Nox4 (1.8-fold) protein. Inhibition of NADPH oxidase with diphenylene iodonium (10μM/30 min) inhibited the increase in ROS production caused by PON2 silencing. Our results suggest that renal PON2 is involved in the inhibition of renal NADPH oxidase activity and ROS production and contributes to the maintenance of normal blood pressure. PON2 is positively regulated by D(2)R and may, in part, mediate the inhibitory effect of renal D(2)R on NADPH oxidase activity and ROS production.  相似文献   

9.
10.
Protein kinase Cθ (PKCθ) is a novel PKC that plays a key role in T lymphocyte activation. To understand how PKCθ is regulated in T cells, we investigated the properties of its N-terminal C2 domain that functions as an autoinhibitory domain. Our measurements show that a Tyr(P)-containing peptide derived from CDCP1 binds the C2 domain of PKCθ with high affinity and activates the enzyme activity of the intact protein. The Tyr(P) peptide also binds the C2 domain of PKCδ tightly, but no enzyme activation was observed with PKCδ. Mutations of PKCθ-C2 residues involved in Tyr(P) binding abrogated the enzyme activation and association of PKCθ with Tyr-phosphorylated full-length CDCP1 and severely inhibited the T cell receptor/CD28-mediated activation of a PKCθ-dependent reporter gene in T cells. Collectively, these studies establish the C2 domain of PKCθ as a Tyr(P)-binding domain and suggest that the domain may play a major role in PKCθ activation via its Tyr(P) binding.  相似文献   

11.
The effects of various protein kinase C (PKC) inhibitors on NADPH oxidase (NO) activation by the phorbol ester PMA and by the chemotactic peptide FMLP were studied. H-7 reduced the effects of both stimuli in human neutrophils (HN) and HL-60 cells by 13-63%. Polymyxin B did not inhibit NO activation by PMA and FMLP in HN and reduced the effects of both stimuli in HL-60 cells by 27-55%. Retinal and retinoic acid enhanced the effects of PMA and FMLP in HL-60 cells and of FMLP in HN up to 4.5-fold. In contrast, retinoic acid inhibited the effect of PMA in HN. In the presence of cytochalasin B, retinal inhibited the effect of FMLP in HN, whereas retinoic acid inhibited NO activation by FMLP in both cell types. The dual PKC/calmodulin inhibitors trifluoperazine and W-7 abolished NO activation by PMA and FMLP in HN and HL-60 cells. Thus, the effects of PKC inhibitors on NO activation exhibit (1) cell type specificity, (2) stimulus dependency and (3) no correlation with in vitro inhibition of PKC. Our results suggest that studies with PKC inhibitors presently available cannot clarify the role of PKC in NO activation.  相似文献   

12.
13.
一氧化氮在血管紧张素Ⅱ激活蛋白激酶C中的作用   总被引:7,自引:0,他引:7  
Fu SG  Xie XJ  Ji LM  Liu PQ  Pan JY  Lu W 《生理学报》2003,55(1):53-57
实验在培养新生大鼠心肌细胞中检测NO前体L-精氨酸(L-Arg)和NO供体硝普钠(SNP)对血管紧张素Ⅱ(AngⅡ)激活蛋白激酶C(PKC)的作用,以探讨心肌细胞PKC水平的信号转导途径,实验结果如下:(1)无血清DMEM培养心肌细胞24h后加入AngⅡ,PKC活性呈剂量依赖性增高;(2)培养基中加入L-Arg,PKC活性呈剂量依赖性降低;(3)用L-Arg100μmol/L进行预处理,30min后分别加入AngⅡ0.1μmol/L或PMA10μmol/L,PKC活性均明显降低,与单纯AngⅡ组和单纯PMA组相比均有显著性差异;用NOS抑制剂L-NAME预处理后,再加入L-Arg,可明显阻断L-Arg对上述两个效应的影响;(4)培养液中加入NO供体SNP,PKC活性呈剂量依赖性地降低;(5)用SNP10μmol/L预处理心肌细胞,5min后分别加入AngⅡ或PMA,PKC活性分别与单纯AngⅡ和单纯PMA组相比均明显降低。以上结果表明,AngⅡ能剂量依赖性激活PKC,而NO可剂量依赖性抑制PKC活性;NOS参与L-Arg抑制AngⅡ或PMA激活PKC的作用。这些观察提示,NO抑制AngⅡ对心肌细胞的作用可能是通过抑制PKC活性实现的,PKC可能是NO和AngⅡ在心肌细胞内信号转导的交汇点(cross talk)。  相似文献   

14.
The activity of apical K(+) channels in cortical collecting duct (CCD) is stimulated and inhibited by protein kinase A (PKA) and C (PKC), respectively. Direct interaction between phosphatidylinositol 4,5-bisphosphate (PIP(2)) and the cloned CCD K(+) channel, ROMK1, is critical for channel opening. We have found previously that phosphorylation of ROMK1 by PKA increases affinity of the channel for PIP(2) and mutation of PKA sites reduces the affinity of ROMK1 for PIP(2). In this study we investigate the molecular mechanism for PKC regulation of ROMK and report that mutants of ROMK1 with reduced PIP(2) affinity exhibit an increased sensitivity to inhibition by phorbol myristate acetate (PMA). The effect of PMA can be prevented by pretreatment with calphostin-C. Activation of PKC by carbachol in Xenopus oocytes co-expressing M1 muscarinic receptors also causes inhibition of the channels. Calphostin-C prevents carbachol-induced inhibition, suggesting that activation of PKC is necessary for inhibition of the channels. PMA reduces open probability of the channel in cell-attached patch clamp recordings. After inhibition by PMA in cell-attached recordings, application of PIP(2) to the cytoplasmic face of excised inside-out membranes restores channel activity. PMA reduces PIP(2) content in oocyte membrane and calphostin-C prevents the reduction. These results suggest that reduction of membrane PIP(2) content contributes to the inhibition of ROMK1 channels by PKC. This mechanism may underscore the inhibition of K(+) secretion in CCD by hormones that activate PKC.  相似文献   

15.
肾上腺髓质素对豚鼠心室肌细胞L-型钙通道的调制   总被引:1,自引:0,他引:1  
Du YM  Tang M  Liu CJ  Luo HY  Hu XW 《生理学报》2002,54(6):479-484
应用全细胞膜片钳技术研究了肾上腺髓质素 (ADM )对豚鼠心室肌细胞L 型钙电流 (ICa ,L)的影响及其信号传导机制。结果发现 :ADM ( 1~ 10 0nmol/L)浓度依赖性抑制ICa,L(P <0 0 5 ) ,并可被ADM特异受体阻断剂ADM2 2 52 ( 10 0nmol/L)完全阻断。用蛋白激酶A特异拮抗剂H 89( 10 μmol/L)预处理 ,对ADM抑制ICa ,L的作用无影响。但用蛋白激酶C (PKC)特异性拮抗剂PKC19 36 预处理 ,可完全阻断ADM的抑制效应 ;而PKC特异性激动剂PMA则可以模仿ADM的抑制效应 (P <0 0 5 )。上述结果提示 :ADM作用于特异性ADM受体可浓度依赖性地抑制豚鼠心室肌细胞ICa ,L,而此作用可能是PKC介导的。  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR)can be activated by protein kinase A (PKA)- or protein kinase C(PKC)-dependent phosphorylation. To understand how activation of bothkinases affects CFTR activity, transfected NIH/3T3 cells werestimulated with forskolin (FSK), phorbol myristate acetate (PMA), orprostaglandin F2 (PGF). PGFstimulates inositol trisphosphate and cAMP production in NIH/3T3 cells.As measured by I efflux,maximal CFTR activity with PGF and FSK was equivalent and fivefoldgreater than that with PMA. Both PGF and PMA had additive effects onFSK-dependent CFTR activity. PMA did not increase cellular cAMP, andmaximal PGF-dependent CFTR activity occurred with ~20% of thecellular cAMP observed with FSK-dependent activation. Staurosporine,but not H-89, inhibited CFTR activation and in vivo phosphorylation atlow PGF concentrations. In contrast, at high PGF concentrations, CFTRactivation and in vivo phosphorylation were inhibited by H-89. Asjudged by protease digestion, the sites of in vivo CFTR phosphorylationwith FSK and PMA differed. For PGF, the data were most consistent within vivo CFTR phosphorylation by PKA and PKC. Our data suggest thatactivation of PKC can enhance PKA-dependent CFTR activation.

  相似文献   

17.
We investigated the role of receptor tyrosine kinases in Ang II-stimulated generation of reactive oxygen species (ROS) and assessed whether MAP kinase signaling by Ang II is mediated via redox-sensitive pathways. Production of ROS and activation of NADPH oxidase were determined by DCFDA (dichlorodihydrofluorescein diacetate; 2 micromol/L) fluorescence and lucigenin (5 micromol/L) chemiluminescence, respectively, in rat vascular smooth muscle cells (VSMC). Phosphorylation of ERK1/2, p38MAP kinase and ERK5 was determined by immunoblotting. The role of insulin-like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) was assessed with the antagonists AG1024 and AG1478, respectively. ROS bioavailability was manipulated with Tiron (10(-5) mol/L), an intracellular scavenger, and diphenylene iodinium (DPI; 10(-6) mol/L), an NADPH oxidase inhibitor. Ang II stimulated NADPH oxidase activity and dose-dependently increased ROS production (p < 0.05). These actions were reduced by AG1024 and AG1478. Ang II-induced ERK1/2 phosphorylation (276% of control) was decreased by AG1478 and AG1024. Neither DPI nor tiron influenced Ang II-stimulated ERK1/2 activity. Ang II increased phosphorylation of p38 MAP kinase (204% of control) and ERK5 (278% of control). These effects were reduced by AG1024 and AG1478 and almost abolished by DPI and tiron. Thus Ang II stimulates production of NADPH-inducible ROS partially through transactivation of IGF-1R and EGFR. Inhibition of receptor tyrosine kinases and reduced ROS bioavaliability attenuated Ang II-induced phosphorylation of p38 MAP kinase and ERK5, but not of ERK1/2. These findings suggest that Ang II activates p38MAP kinase and ERK5 via redox-dependent cascades that are regulated by IGF-1R and EGFR transactivation. ERK1/2 regulation by Ang II is via redox-insensitive pathways.  相似文献   

18.
Generation of superoxide anion by the multiprotein complex NADPH phagocyte oxidase is accompanied by extensive phosphorylation of its 47-kDa protein component, p47(phox), a major cytosolic component of this oxidase. Protein kinase C zeta (PKC zeta), an atypical PKC isoform expressed abundantly in human polymorphonuclear leukocytes (PMN), translocates to the PMN plasma membrane upon stimulation by the chemoattractant fMLP. We investigated the role of PKC zeta in p47(phox) phosphorylation and in superoxide anion production by human PMN. In vitro incubation of recombinant p47(phox) with recombinant PKC zeta induced a time- and concentration-dependent phosphorylation of p47(phox) with an apparent K(m) value of 2 microM. Phosphopeptide mapping analysis of p47(phox) showed that PKC zeta phosphorylated fewer selective sites in comparison to "conventional" PKCs. Serine 303/304 and serine 315 were identified as targets of PKC zeta by site-directed mutagenesis. Stimulation of PMN by fMLP induced a rapid and sustained plasma membrane translocation of PKC zeta that correlated to that of p47(phox). A cell-permeant-specific peptide antagonist of PKC zeta inhibited both fMLP-induced phosphorylation of p47(phox) and its membrane translocation. The antagonist also inhibited the fMLP-induced production of oxidant (IC(50) of 10 microM), but not that induced by PMA. The inhibition of PKC zeta expression in HL-60 neutrophil-like cells using antisense oligonucleotides (5 and 10 microM) inhibited fMLP-promoted oxidant production (27 and 50%, respectively), but not that induced by PMA. In conclusion, p47(phox) is a substrate for PKC zeta and participates in the signaling cascade between fMLP receptors and NADPH oxidase activation.  相似文献   

19.
This study described the involvement of short-term PKA, PKC or PI3K phosphorylation-mediated processes in the regulation of activity and trafficking of the excitatory amino acid transporters EAAC1, GLAST and GLT-1 endogenously expressed in neuron-enriched cultures. Glutamate uptake was dose-dependently decreased by inhibitors of protein kinase A (PKA), [N-[2-(p-bromocinnamylamino)-ethyl]-5-(isoquinolinesulfonamide)] (H89) or phosphatidylinositol 3-kinase (PI3K) (wortmannin), but not altered after protein kinase C (PKC) inhibition (staurosporine) or activation phorbol-12-myristate-13-acetate (PMA). Biotinylation and immunoblotting results (% of controls) showed that EAAC1 membrane expression was significantly decreased by H89 (71.9+/-4.7%) and wortmannin (63.3+/-20.0%) and increased by PMA (137.7+/-15.5%). H89 and PMA induced a significant decrease of the cell surface fraction of GLAST (54.0+/-34.1% and 73.3+/-14.3%, respectively) whereas wortmannin significantly increased this fraction (119.8+/-9.3%). After treatment with H89, the GLT-1 membrane level showed a two-fold increase (179.4+/-19.7%). Conversely, PMA and wortmannin induced a significant decrease of the cell surface expression of GLT-1 (49.0+/-15.4% and 40.7+/-33.7%, respectively). Confocal microscopy revealed a wortmannin-induced clustering of EAAC1 in the intracellular compartment. These data suggest that trafficking of glutamate transporters can be differentially regulated by PKA-, PKC- and PI3K-dependent signaling pathways and could therefore control total glutamate uptake activity. These processes may represent rapid adaptive responses to changes in the cellular environment, which significantly contribute to regulation of EAA transmission and further prevent possible excitotoxic events.  相似文献   

20.
It has been well known that IL-32 exerts pro-inflammatory effects on the various inflammatory diseases in clinical studies. Here, we confirmed that IL-32θ, a new isoform of IL-32, decreased the phorbol 12-myristate 13-acetate (PMA)-induced IL-1β expression in THP-1 human myelomonocyte. We previously reported that the IL-32 isoforms control expressions of other cytokines via novel PKCs. Likewise, IL-32θ interacted with PKCδ, and consequently inhibited PKCδ-mediated phosphorylation of PU.1. Moreover, IL-32θ attenuated the localization of PU.1 into the IL-1β promoter region. These findings reveal that IL-32θ reduces PKCδ-mediated phosphorylation of PU.1, resulting in attenuation of IL-1β production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号