首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 198 毫秒
1.
The matched filter hypothesis proposes that the tuning of females' auditory sensitivity matches the spectral energy distribution of males' signals. Such correspondence is expected to arise over evolutionary time, as it promotes conspecific information transfer and reduces interference from other sound sources. Our main objective was to determine the correspondence between the acoustic sensitivity of female frogs of Eupsophus roseus and the spectral characteristics of advertisement vocalizations produced by conspecific males. We also aimed to determine how auditory sensitivity is related to the characteristics of background noise. We analysed data on the auditory sensitivity of E. roseus females, and recordings of conspecific male vocalizations and of the acoustic environment during the breeding period of this species. Our results indicate a concordance between the auditory sensitivity of females and call spectra that would provide an appropriate detection of these signals. In addition, this matching is large relative to the correspondence between auditory sensitivity with the spectra of the abiotic and biotic background noise, with the last component being associated with calls of the related species Eupsophus vertebralis. This may be an adaptation of receivers confronting sound interference, which improves the capability of E. roseus to communicate sexually by means of acoustic signals. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 814–827.  相似文献   

2.
The matched filter hypothesis proposes that the tuning of auditory sensitivity and the spectral character of calls will match in order to maximize auditory processing efficiency during courtship. In this study, we analyzed the acoustic structure of male calls and both male and female hearing sensitivities in the little torrent frog (Amolops torrentis), an anuran species who transmits acoustic signals across streams. The results were in striking contradiction to the matched filter hypothesis. Auditory brainstem response results showed that the best hearing range was 1.6–2 kHz consistent with the best sensitive frequency of most terrestrial lentic taxa, yet completely mismatched with the dominant frequency of conspecific calls (4.3 kHz). Moreover, phonotaxis tests show that females strongly prefer high‐frequency (4.3 kHz) over low‐frequency calls (1.6 kHz) regardless of ambient noise levels, although peripheral auditory sensitivity is highest in the 1.6–2 kHz range. These results are consistent with the idea that A. torrentis evolved from nonstreamside species and that high‐frequency calls evolved under the pressure of stream noise. Our results also suggest that female preferences based on central auditory system characteristics may evolve independently of peripheral auditory system sensitivity in order to maximize communication effectiveness in noisy environments.  相似文献   

3.
It is generally thought that for species using vocal communication the spectral properties of the sender’s calls should match the frequency sensitivity of the receiver’s auditory system. Nevertheless, few studies have investigated both sender and receiver characteristics in anuran species. In the present study, auditory brainstem responses (ABRs) were recorded in the serrate legged treefrog, Philautus odontotarsus, in order to determine if male call spectral structure and hearing sensitivity in males and females have co-evolved in this species. The results showed that the spectral structures of male vocalization match both male and female hearing sensitivity, even though the dominant frequencies of male calls (2.5 kHz) are mismatched with the regions of best frequency sensitivity (1.4 and 2.8 kHz). In addition, the results show that, in contrast with most previous ABR studies in non-human animals, but consistent with human studies, there are noticeable sex differences in peripheral auditory sensitivity in Philautus insofar as females exhibit lower auditory thresholds than males across the entire 1.8–18 kHz frequency range. The results also show that the dominant frequency of male calls is negatively correlated with body size, indicating that call characteristics reflect body size in this species which may be used by females during mate choice.  相似文献   

4.
Acoustic noise from automobile traffic impedes communication between signaling animals. To overcome the acoustic interference imposed by anthropogenic noise, species across taxa adjust their signaling behavior to increase signal saliency. As most of the spectral energy of anthropogenic noise is concentrated at low acoustic frequencies, species with lower frequency signals are expected to be more affected. Thus, species with low-frequency signals are under stronger pressure to adjust their signaling behaviors to avoid auditory masking than species with higher frequency signals. Similarly, for a species with multiple types of signals that differ in spectral characteristics, different signal types are expected to be differentially masked. We investigate how the different call types of a Japanese stream breeding treefrog (Buergeria japonica) are affected by automobile traffic noise. Male B. japonica produce two call types that differ in their spectral elements, a Type I call with lower dominant frequency and a Type II call with higher dominant frequency. In response to acoustic playbacks of traffic noise, B. japonica reduced the duration of their Type I calls, but not Type II calls. In addition, B. japonica increased the call effort of their Type I calls and decreased the call effort of their Type II calls. This result contrasts with prior studies in other taxa, which suggest that signalers may switch to higher frequency signal types in response to traffic noise. Furthermore, the increase in Type I call effort was only a short-term response to noise, while reduced Type II call effort persisted after the playbacks had ended. Overall, such differential effects on signal types suggest that some social functions will be disrupted more than others. By considering the effects of anthropogenic noise across multiple signal types, these results provide a more in-depth understanding of the behavioral impacts of anthropogenic noise within a species.  相似文献   

5.
The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects’ vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations.  相似文献   

6.
ABSTRACT

We tested the auditory sensitivity of red-billed firefinches Lagonosticta senegal0061 and Spanish timbrado canaries Serinus canaria. Both these species produce songs and calls that are narrowband and relatively high in frequency, with spectral energy falling predominantly in the region of 3–6 kHz. Hearing thresholds were measured in these two species and compared to the auditory sensitivity of closely related species: the well studied zebra finch Taeniopygia guttata, and other strains of canary bred for song. Auditory thresholds were similar in both groups of birds, with firefinches having an audiogram typical for that of small birds. Timbrado canaries exhibited an audiogram with its greatest sensitivity in the relatively high region of 4–6 kHz, corresponding to the peak frequency of its calls. Critical ratios measured over a range of several octaves increased in a monotonie fashion at a rate of 2–3 dB per octave for both firefinches and timbrado canaries. Critical ratios in these two species are similar to what has been found in most other small passerine species, suggesting spectral resolving abilities similar to most small birds tested to date.  相似文献   

7.
Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well‐developed auditory sensilla, on average 32–35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems.  相似文献   

8.
In territorial species, males use signals to advertise territory ownership to other males. In species with acoustic communication, masking interference by heterospecific signals may impede male–male communication and affect the reproductive success of males. Frogs are thought to minimize masking interference by using species‐specific frequency channels for communication. For this strategy to work, a frequency match is expected between the advertisement call and the auditory sensitivity. A previous field study on the Amazonian frog Epipedobates femoralis supported this prediction, but also revealed an asymmetric decrease in the probability of male reaction towards synthetic calls. That males of E. femoralis reacted less towards low‐frequency (compared with high‐frequency) calls was interpreted as a mechanism that reduces masking interference by E. trivittatus, a species calling within a lower, partially overlapping, frequency range. If this hypothesis holds, then males of E. trivittatus should exhibit the opposite asymmetry pattern, i.e. react less towards high‐frequency (compared with low‐frequency) calls. We tested this prediction by conducting 25 playback experiments on 22 males of E. trivittatus. Male phonotactic reaction towards synthetic calls of various frequency values was evaluated as a binary variable (the male either approached or not the loudspeaker), by measuring the latency until first jump, and by calculating the linear approaching speed. As in E. femoralis, the maximum probability of positive reaction was matched to the call frequency. Against our expectations, the response curve was symmetric. We discuss whether these results reflect a lack of selective pressures, or a compromise between natural selection and physiological constraints on the shape of the frequency recognition curves.  相似文献   

9.
Differences in auditory perception between species are influenced by phylogenetic origin and the perceptual challenges imposed by the natural environment, such as detecting prey- or predator-generated sounds and communication signals. Bats are well suited for comparative studies on auditory perception since they predominantly rely on echolocation to perceive the world, while their social calls and most environmental sounds have low frequencies. We tested if hearing sensitivity and stimulus level coding in bats differ between high and low-frequency ranges by measuring auditory brainstem responses (ABRs) of 86 bats belonging to 11 species. In most species, auditory sensitivity was equally good at both high- and low-frequency ranges, while amplitude was more finely coded for higher frequency ranges. Additionally, we conducted a phylogenetic comparative analysis by combining our ABR data with published data on 27 species. Species-specific peaks in hearing sensitivity correlated with peak frequencies of echolocation calls and pup isolation calls, suggesting that changes in hearing sensitivity evolved in response to frequency changes of echolocation and social calls. Overall, our study provides the most comprehensive comparative assessment of bat hearing capacities to date and highlights the evolutionary pressures acting on their sensory perception.  相似文献   

10.
It has been suggested that the evolution of signals must be a wasteful process for the signaller, aimed at the maximization of signal honesty. However, the reliability of communication depends not only on the costs paid by signallers but also on the costs paid by receivers during assessment, and less attention has been given to the interaction between these two types of costs during the evolution of signalling systems. A signaller and receiver may accept some level of signal dishonesty by choosing signals that are cheaper in terms of assessment but that are stabilized with less reliable mechanisms. I studied the potential trade‐off between signal reliability and the costs of signal assessment in the corncrake (Crex crex). I found that the birds prefer signals that are less costly regarding assessment rather than more reliable. Despite the fact that the fundamental frequency of calls was a strong predictor of male size, it was ignored by receivers unless they could directly compare signal variants. My data revealed a response advantage of costly signals when comparison between calls differing with fundamental frequencies is fast and straightforward, whereas cheap signalling is preferred in natural conditions. These data might improve our understanding of the influence of receivers on signal design because they support the hypothesis that fully honest signalling systems may be prone to dishonesty based on the effects of receiver costs and be replaced by signals that are cheaper in production and reception but more susceptible to cheating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号