首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tersoff-potential - based molecular dynamics method is used to simulate wrinkling deformation of one graphene sheet under shear, and the obtained deformation is compared with analytical solutions of macro-membrane. Furthermore, thermal conductivity of the wrinkled graphene at different temperatures is calculated. It is found that (1) the wrinkling deformation of graphene sheet under shear is close to the analytical solutions of macro-membrane under shear, which implies that the solutions of macro-membrane are applicable to predict the wrinkling deformation of graphene sheets under shear; (2) the more serious the wrinkling of the graphene under shear is, the stronger the phonon scattering is and, therefore, the lower the thermal conductivity of the wrinkled graphene is; (3) within the temperature range of 400–700 K, the thermal conductivity of graphene sheet decreases with increase in temperature.  相似文献   

2.
Molecular dynamics simulations of argon molecules confined between two parallel graphene sheets are carried out to investigate the parameters affecting heat transfer and thermal properties. These parameters include wall–fluid interaction strength, fluid density and wall temperature. For constant wall temperature simulations, we show that the first two parameters have influence on near-wall fluid density. As a result, the heat transfer at wall–fluid interfaces and thus through argon molecules across the domain will change. Also, we demonstrate that variations in wall temperature rarely affects the density profiles of argon molecules next to the walls. Therefore, in these cases, the variations in thermal resistance at the interface is most dominantly due to wall temperature itself. To analyse the results, the density and temperature profiles and also other parameters including heat flux and temperature gradient of bulk of argon molecules, Kapitza length and argon thermal conductivity are considered. The Kapitza length describes thermal resistance at liquid–solid interface. According to the results, increasing wall–fluid interaction strength leads to greater molecular aggregation of argon molecules near the walls and, consequently, decreasing the Kapitza length. Furthermore, higher fluid density leads to greater thermal resistance at wall–fluid interactions and therefore greater temperature jumps are observed in temperature profiles.  相似文献   

3.
Metal oxides, as one of the most promising flame retardant additives, improve the fire retardant and the thermal stability properties of polymers. In the present study, molecular dynamics (MD) simulations based on the united atom model were applied to study the effect of alumina nanoparticles on the density, thermal conductivity, heat capacity, and thermal diffusivity of isotactic poly(methyl methacrylate) (is-PMMA). Thermal diffusivity of PMMA and PMMA/alumina nanocomposite were investigated through calculating thermal conductivity, density and heat capacity in the range of 300–700?K. Heat capacity can be calculated using fluctuations properties of energy. Thermal conductivity was calculated through the nonequilibrium molecular dynamics (NEMD) simulation by Fourier’s law approach. Our results show that the addition of alumina nanoparticles decreases the heat capacity and increases the glass transition temperature (Tg), thermal conductivity and thermal diffusivity of the PMMA. Therefore, the addition of alumina nanoparticles to PMMA improves the fire retardancy of the polymer. In addition, we illustrate the links between the intermolecular and bulk properties of PMMA in the presence of the alumina nanoparticles.  相似文献   

4.
We report on the simulation of heat conduction in nanocomposite by using a novel mesoscopic particle method, the energy-conserving dissipative particle dynamics (eDPD) method. The original eDPD method is extended to account for the interfacial thermal resistance occurs at the angstrom-wide interface between materials, and we also investigated the choice of time step in eDPD simulations. For nanocomposite with randomly dispersed nanoparticles, the eDPD simulations predict that the thermal conductivity of matrix material can be enhanced by embedding high thermal conductivity nanoparticles, but the effectiveness of such a strategy diminishes as the interfacial thermal resistance between the nanoparticle and matrix material increases. These results are in quantitative agreement with the classical Maxwell–Garnett model. Further simulations indicate that the enhancement of thermal conductivity can be affected by the alignment of nanoparticles with respect to the temperature gradient, which cannot be predicted by the classical models. These simulation results indicate that eDPD method can be a versatile method for studying thermal transport in heterogeneous materials and complex systems.  相似文献   

5.
Materials designed to undergo a phase transition at a prescribed temperature have been advanced as elements for controlling thermal flux. Such phase change materials can be used as components of reversible thermal diodes, or materials that favor heat flux in a preferred direction; however, a thorough mathematical analysis of such diodes is thus far absent from the literature. Herein, it is shown mathematically that the interface of a phase change material with a phase invariant one can function as a simple thermal diode. Design equations are derived for such phase change diodes, solving for the limits where the transition temperature falls within or outside of the temperature gradient across the device. Criteria are derived analytically for the choice of thermal conductivity of the invariant phase to maximize the rectification ratio. Finally, the model is applied to several experimental systems in the literature, providing bounds on observed performance. This model should aid in the development of materials capable of controlling heat flux.  相似文献   

6.
A molecular dynamics study on the solid–liquid (S-L) interfaces for solid wall of gold having the face-centred cubic of (100), (110) and (111) crystal planes contacting liquid methane was examined using non-equilibrium molecular dynamics simulations. An investigation on the thermal rectification effect was performed by measuring the thermal boundary conductance (TBC) at the S-L interface. Thermal rectification can be defined as the differences in the TBC at the interface between the two opposite heat flow directions; one is from the liquid to solid and vice versa. The thermal rectifications are up to 13% for (110) crystal plane, followed by 6% and 0.3% for (111) and (100) crystal planes, respectively. It was found that the TBC at the S-L interface was influenced by the magnitude of the adsorption of liquid molecules at the vicinity of the interface. The results show that due to the different temperature distribution, different magnitude of the adsorption of liquid molecules is generated for the two opposite heat flow directions. On the surface of the solid walls for (110) crystal plane, where lattice-scale corrugation exists, it was found that there exists difference in distance between the surface layers of the solid and liquid across the interface between the cases of the two opposite heat flow directions, which affects the TBC at the interface. The present results suggest that the factors that influence the thermal rectification at the S-L interface are the magnitude of the adsorption of liquid molecules and the surface structure of the solid walls that differ significantly among the three types of crystal planes.  相似文献   

7.
A systematic investigation of the thermal conductivity of zigzag graphene nanoribbons (ZGNRs) doped with nitrogen and containing a vacancy defect was performed using reverse nonequilibrium molecular dynamics (RNEMD). The investigation showed that the thermal conductivity of the ZGNRs was significantly reduced by nitrogen doping. The thermal conductivity dropped rapidly when the nitrogen doping concentration was low. Also, the presence of a vacancy defect was found to significantly decrease the thermal conductivity. Initially, as the vacancy moved from the heat sink to the heat source, the phonon frequency and the phonon energy increased, and the thermal conductivity decreased. When the distance between the vacancy in the ZGNR and the edge of the heat sink reached 2.214 nm, tunneling began to occur, allowing high-frequency phonons to pass through the vacancies and transfer some energy. The curve of the thermal conductivity of the ZGNRs versus the vacancy position was found to be pan-shaped, with the thermal conductivity of the ZGNRs controlled by the phonon. These findings could be useful when attempting to control heat transfer on the nanoscale using GNR-based thermal devices.  相似文献   

8.
The area coefficients of thermal expansion (CTEs) of perfect single layer graphene sheet (SLGS) and SLGS with vacancy defects of different distributions were calculated in this work through molecular dynamics (MD) simulations. The effects of some parameters such as temperature, SLGS size, sample area size, vacancy fraction and vacancy distribution on CTE were investigated extensively. Numerical results clearly revealed that for both perfect and defective SLGSs, the area CTEs are negative and nonlinear with the temperature variation within a wide temperature range. Moreover, the area CTEs tend to be more insensitive to the temperature when temperature is higher than 600 K. The area CTE of a perfect SLGS converges only when the SLGS size and the ratio of the sample size to the SLGS size is above a critical value. When the SLGS size or the sample size is small, the area CTE shows distinct size-dependence. In addition, a set of empirical formulations is proposed for evaluating the area CTEs of perfect SLGSs within a wide temperature range. For the SLGS with vacancy defects, the area CTE decreases with the increase of vacancy fraction within the temperature range considered. Furthermore, compared with a decentralised distribution of vacancy defects, a concentrated distribution leads to a smaller value of area CTE of SLGS, especially for the case of high vacancy fraction.  相似文献   

9.
It is well known that there is a size effect for the thermal conductivity of thin films and that vacancy defects in film reduce the film's thermal conduction. In this paper, the film size and vacancy defect effects on the thermal conductivities of argon thin films were studied by molecular dynamics simulations. The results show the existence of phonon boundary scattering. The results also confirm that the theoretical model based on the Boltzmann equation can accurately model the thermal conduction of thin argon films. Both the theoretical and MD results illustrate that, although, both the defect and the thickness of the thin film deduce the thermal conductivity, their physical mechanisms differ.  相似文献   

10.
Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane‐impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH‐O) and a poly(N‐isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.  相似文献   

11.
Interfaces play an important role in microscale and nanoscale heat transfer processes with molecular dynamics (MD) simulations often used to study these interfacial phenomena. In this study, two models were used to simulate thermal conduction across micro contact points and the thermal contact resistance using non-equilibrium molecular dynamics simulations with consideration of the near field radiation. When the ratio of the length of the micro contact to the length of the conduction region is less than 0.125, the influence of the near field radiation should be considered; but when the ratio is larger than 0.2, it can be neglected. When the computational domain sizes are 8.50 × 10.62 × 8.50 nm and 10.62 × 10.62 × 10.62 nm, the MD results show that the thermal contact resistance exponentially increases with decreasing area of the micro contact point and increases with increasing micro contact layer thickness. The MD thermal contact resistances in nanoscale are much larger than that of the classical thermal analysis since the material thermal conductivity reduction is ignored in the classical model. The results also show that material defects increase the thermal resistance.  相似文献   

12.
In a laboratory heat-physical model of the rabbit reflecting basic heat-physical parameters of animal body (weight, heat absorption and heat production, size of a relative surface, capacity heat-production etc.), the changes of radial distribution of temperature and size of a cross superficial temperature gradient of the body were investigated with various parities (ratio) of environmental temperature and size of capacity heat production imitated by an electrical heater. Superficial layer of the body dependent from capacity heat production and environmental temperature can serve for definition of general heat content changes in the body for maintaining its thermal balance within the environment.  相似文献   

13.
The current multi-layer insulation used in the extravehicular mobility unit (EMU) will not be effective in the atmosphere of Mars due to the presence of interstitial gases. Alternative thermal insulation means have been subjected to preliminary evaluation by NASA to attempt to identify a material that will meet the target conductivity of 0.005 W/m-K. This study analyzes numerically the thermal conductivity performance for three of these candidate insulating fiber materials in terms of various denier (size), interstitial void fractions, interstitial void media, and orientations to the applied temperature gradient to evaluate their applicability for the new Mars suit insulation. The results demonstrate that the best conductive insulation is achieved for a high-void-fraction configuration with a grooved fiber cross section, aerogel void medium, and the fibers oriented normal to the heat flux vector. However, this configuration still exceeds the target thermal conductivity by a factor of 1.5.  相似文献   

14.
A thermal therapy for cancer in skin tissue is numerically investigated using three bioheat conduction models, namely Pennes, thermal wave and dual-phase lag models. A laser is applied at the surface of the skin for cancer ablation, and the temperature and thermal damage distributions are predicted using the three bioheat models and two different modeling approaches of the laser effect. The first one is a prescribed surface heat flux, in which the tissue is assumed to be highly absorbent, while the second approach is a volumetric heat source, which is reasonable if the scattering and absorption skin effects are of similar magnitude. The finite volume method is applied to solve the governing bioheat equation. A parametric study is carried out to ascertain the effects of the thermophysical properties of the cancer on the thermal damage. The temperature distributions predicted by the three models exhibit significant differences, even though the temperature distributions are similar when the laser is turned off. The type of bioheat model has more influence on the predicted thermal damage than the type of modeling approach used for the laser. The phase lags of heat flux and temperature gradient have an important influence on the results, as well as the thermal conductivity of the cancer. In contrast, the uncertainty in the specific heat and blood perfusion rate has a minor influence on the thermal damage.  相似文献   

15.
The purpose of this study is to simulate the heat transfer problem when the 3-D Alanine tissue is heated by the gold nanoparticle in the field of molecular dynamics. In this paper, the Alanine molecule is adopted and its parameters are available in the GROMACS protein data bank. A computing algorithm is developed to evaluate the heat transfer phenomena in the nano-scale biological system based on the molecular dynamics and the protein data bank. The value of the thermal conductivity of Alanine is calculated from the autocorrelation function of the Green-Kubo formalism and this result has a roughly approximation with the bulk thermal conductivity reported by experimental data . Two kinds of problems are investigated in the paper. One is the Alanine tissue heated by the constant heat source and the other is by the time-varying heat source. The numerical results show that a temperature jump exists around the source and the temperature profiles drop to the environmental temperature within a very short distance. It concludes that only a small region around the nano-scale heat source is affected by the heated process. Therefore, the results of the nanoparticle-heated method could be applied to the clinical therapy of tumor, and the normal cells are destroyed only within a smaller region than those of chemotherapy or surgery.  相似文献   

16.
The thermal limitations inherent with the use of invasive thermistor probes in the measurement of thermal properties of biomaterials have been investigated. An electronic temperature controller has been developed which provides a nearly instantaneous step rise in average probe resistance (temperature). The method of experimentally determining the heat rate required to maintain the average probe temperature constant and incorporation of that heat rate into the general heat diffusion equation provides a solution which allows the determination of both thermal conductivity and diffusivity values with improved accuracy. The method is general to all media which wet the surface of the probe; the need for calibrating media is avoided. The solution also predicts the minimum required sample size.  相似文献   

17.
The influence of the orientations and concentrations of the Stone–Wales (SW) defects on the thermal conductivity of zigzag and armchair graphene nanoribbons (GNRs) is explored using the reverse non-equilibrium molecular dynamics method. The results show that the thermal conductivity of GNRs with two different chirality cases reaches the minimum in the range of 0.1–0.7% defect concentration. Beyond a critical value of the SW defect concentration, the thermal conductivity increases with the increase in SW concentration for both zigzag and armchair GNRs. It is shown that at high concentrations of the SW defects, the thermal conductivity of zigzag GNRs with Type II defects is larger than the GNRs with Type I defects. Finally, the dependence of the SW defect concentration and orientation on the power spectra overlaps have also been explored.  相似文献   

18.
In this work, we present temperature dependence of lattice parameter and normalised lattice parameter in the atmospheric pressure and 120 bar and also pressure dependence of unit cell volume and normalised unit cell volume at 150 and 250?K for variety guests with different size, polarity and guest–host hydrogen bonding capability such as trimethylene oxide (TMO), ethylene oxide (EO), formaldehyde (FA), cyclobutane (CB), cyclopropane (CP) and ethane (Et) in the large cages with CH4 in small cages of sI clathrate hydrates by molecular dynamics simulations. The obtained values of lattice parameters for the guest species are compatible with the experimental values. These clathrate hydrates are simulated with TIP4P/ice four-site water potential. Herein, isobaric thermal expansivity and isothermal compressibility are calculated at a temperature range of 50–250?K and a wide pressure range. These structural properties have been compared for guests which they are isoelectronic and have similar masses but with different size and polarity. We use molecular dynamics simulations to relate microscopic guest properties, like guest–host hydrogen bonding to macroscopic sI clathrate hydrate properties. The temperature dependence of thermodynamic properties such as constant-volume and constant-pressure heat capacity is presented in the atmospheric pressure for these guest species.  相似文献   

19.
Thermal conductivities of graphene-like silicon and carbon hybrid nanostructures with silicon atom percentages varying from 0?% (graphene) to 100?% (silicene) are investigated using the reserve non-equilibrium molecular dynamic (RNEMD) method and Tersoff bond order potentials. The thermal conductivity of graphene is dramatically reduced with increasing silicon concentration, and the reduction appears to be related more to the topological structures formed than the amount of doped silicon atoms present. The reduction is collectively contributed to by reduced phonon group velocities (v), phonon free paths (l ( ∞ )), and the specific heat capacity (c) of the material. For systems with high symmetry, thermal conductivity is mainly influenced by v and c. For systems with low symmetry, thermal conductivity is dominated by l ( ∞ ); such materials are also more direction-dependent on thermal flux than highly symmetric materials.  相似文献   

20.

1. 1. A new and simple device for measurements of thermal conductivity of fur and blubber is described.

2. 2. The device measures temperature differences across the sample and across a polyethylene plate with known conductivity which is placed in series with the sample.

3. 3. The conductivity of the polyethylene was determined from the steady state temperature difference and heat flux through the wall of a polyethylene pipe with a central heat source.

4. 4. The accuracy of the device is ±4.0%.

5. 5. The thermal conductivity of harp seal (Phoca groenlandica) and minke whale (Balaenoptera acutorostrata) blubber, as determined by use of this device, is very close to previously reported values.

Author Keywords: Seal; whale; thermoregulation; energetics; thermal conductivity; blubber; fur  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号