首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Objective:

Obesity is associated with chronic inflammation. Toll‐like receptors (TLR) and NOD‐like receptors (NLR) are two families of pattern recognition receptors that play important roles in immune response and inflammation in adipocytes. It has been reported that TLR4 and TLR2 activation induce proinflammatory changes that impair adipocyte differentiation. However, the effects of activation of NOD1 and NOD2, the two prominent members of NLR, on adipocyte differentiation have not been studied.

Design and Methods:

3T3‐L1 and human adipose‐derived stem cells were tested for adipocyte differentiation in the presence or absence of NOD ligand. Adipocyte differentiation was evaluated by the adipocyte markers gene expression and Oil Red O staining for lipid accumulation.

Results:

Activation of NOD1, but not NOD2, by a synthetic ligand dose‐dependently suppressed 3T3‐L1 adipocyte differentiation as revealed by Oil Red O stained cell morphology, lipid accumulation, and attenuated gene expression of adipocyte markers (PPARγ, C/EBPα, SCD, FABP4, Adiponectin). Activation of NOD1, but not NOD2, induced NF‐κB activation, which correlated with their abilities to suppress ligand‐induced PPARγ transaction. Moreover, the suppressive effect by NOD1 activation was reversed by IκB super‐repressor which blocks NF‐κB activation. The suppression by NOD1 ligand C12‐iEDAP on adipocyte differentiation was reversed by small RNA interference targeting NOD1, demonstrating the specificity of NOD1 activation. In contrast, activation of NOD1 and NOD2 both significantly suppressed adipocyte differentiation of human adipose‐derived adult stem cells, demonstrating the species specific effects of NOD activation. In contrast to enhanced leptin mRNA by LPS and TNFα, NOD1 activation suppressed leptin mRNA in adipocytes, suggesting the differential effects of NOD1 activation in adipocytes.

Conclusions:

Overall, our results suggest that NOD1 represents a novel target for adipose inflammation in obesity.  相似文献   

3.

Background

Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.

Principal Findings

Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.

Conclusion

Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.  相似文献   

4.

Background  

Adult mesenchymal stem cells (MSCs) derived from adipose tissue have the capacity to differentiate into mesenchymal as well as endodermal and ectodermal cell lineage in vitro. We characterized the multipotent ability of human adipose tissue-derived stem cells (hADSCs) as MSCs and investigated the neural differentiation potential of these cells.  相似文献   

5.
Cao H  Chu Y  Lv X  Qiu P  Liu C  Zhang H  Li D  Peng S  Dou Z  Hua J 《PloS one》2012,7(2):e31502

Background

The small molecule 6-bromoindirubin-30-oxime (BIO), a glycogen synthase kinase 3 (GSK3) inhibitor, is a pharmacological agent known to maintain self-renewal in human and mouse embryonic stem cells (ESCs). However, the precise role of GSK3 in immortalized pancreatic mesenchymal stem cells (iPMSCs) growth and survival is not completely understood at present.

Results

To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effect of BIO on iPMSCs. We found that the inactivation of GSK3 by BIO can robustly stimulate iPMSCs proliferation and mass formation as shown by QRT-PCR, western blotting, 5-Bromo-2-deoxyuridine (BrdU) immunostaining assay and tunel assay. However, we did not find the related roles of BIO on β cell differentiation by immunostaining, QRT-PCR assay, glucose-stimulated insulin release and C-peptide content analysis.

Conclusions

These results suggest that BIO plays a key role in the regulation of cell mass proliferation and maintenance of the undifferentiated state of iPMSCs.  相似文献   

6.

Background  

Potential therapeutic use of mesenchymal stem cells (MSCs) is likely to require large-scale in vitro expansion of the cells before transplantation. MSCs from adipose tissue can be cultured extensively until senescence. However, little is known on the differentiation potential of adipose stem cells (ASCs) upon extended culture and on associated epigenetic alterations. We examined the adipogenic differentiation potential of clones of human ASCs in early passage culture and upon senescence, and determined whether senescence was associated with changes in adipogenic promoter DNA methylation.  相似文献   

7.

Background

Perturbations in abdominal fat secreted adipokines play a key role in metabolic syndrome. This process is further altered during the aging process, probably due to alterations in the preadipocytes (aka. stromal vascular fraction cells-SVF cells or adipose derived stem cells-ASCs) composition and/or function. Since microRNAs regulate genes involved both in development and aging processes, we hypothesized that the impaired adipose function with aging is due to altered microRNA regulation of adipogenic pathways in SVF cells.

Methodology and Principal Findings

Alterations in mRNA and proteins associated with adipogenic differentiation (ERK5 and PPARg) but not osteogenic (RUNX2) pathways were observed in SVF cells isolated from visceral adipose tissue with aging (6 to 30 mo) in female Fischer 344 x Brown Norway Hybrid (FBN) rats. The impaired differentiation capacity with aging correlated with altered levels of miRNAs involved in adipocyte differentiation (miRNA-143) and osteogenic pathways (miRNA-204). Gain and loss of function studies using premir or antagomir-143 validated the age associated adipocyte dysfunction.

Conclusions and Significance

Our studies for the first time indicate a role for miRNA mediated regulation of SVF cells with aging. This discovery is important in the light of the findings that dysfunctional adipose derived stem cells contribute to age related chronic diseases.  相似文献   

8.
In this study multipotent adipose-derived stem cells isolated from human adipose tissue (hMADS cells) were shown to differentiate into adipose cells in serum-free, chemically defined medium. During the differentiation process, hMADS cells exhibited a gene expression pattern similar to that described for rodent clonal preadipocytes and human primary preadipocytes. Differentiated cells displayed the key features of human adipocytes, i.e., expression of specific molecular markers, lipolytic response to agonists of beta-adrenoreceptors (beta2-AR agonist > beta1-AR agonist > beta3-AR agonist) and to the atrial natriuretic peptide, insulin-stimulated glucose transport, and secretion of leptin and adiponectin. hMADS cells were able to respond to drugs as inhibition of adipocyte differentiation was observed in the presence of prostaglandin F2alpha, tumour necrosis factor-alpha, and nordihydroguaiaretic acid, a natural polyhydroxyphenolic antioxidant. Thus, for the first time, human adipose cells with normal karyotype and indefinite life span have been established. They represent a novel and valuable tool for studies of fat tissue development and metabolism.  相似文献   

9.

Background  

In severe obesity, as well as in normal development, the growth of adipose tissue is the result of an increase in adipocyte size and numbers, which is underlain by the stimulation of adipogenic differentiation of precursor cells. A better knowledge of the pathways that regulate adipogenesis is therefore essential for an improved understanding of adipose tissue expansion. As microRNAs (miRNAs) have a critical role in many differentiation processes, our study aimed to identify the role of miRNA-mediated gene silencing in the regulation of adipogenic differentiation.  相似文献   

10.

Background  

Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs) of young (8-10 weeks), adult (5 months), and old (21 months) mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells.  相似文献   

11.

Background

Inhibition of angiogenesis may impair adipose tissue development.

Methods

The effect of fumagillin (a methionine aminopeptidase-2 inhibitor) on adipocyte differentiation and de novo adipogenesis was investigated in murine model systems.

Results

During in vitro differentiation of murine 3T3-F442A preadipocytes, administration of fumagillin (≥ 1 μM) resulted in reduced expression of methionine aminopeptidase-2, and in enhanced differentiation rate. In vivo, de novo development of adipose tissue following injection of preadipocytes in nude mice kept on high fat diet was somewhat, but not significantly (p = 0.06), reduced by administration of fumagillin (1 mg/kg/day during 4 weeks by oral gavage). This was not associated with effects on blood vessel size or density, whereas blood vessel density normalized to adipocyte density was enhanced upon fumagillin treatment. In vivo BrdU incorporation experiments did not reveal effects of fumagillin on cell proliferation in adipose tissues, and cellular apoptosis was also not affected.Treatment with fumagillin enhances in vitro differentiation of preadipocytes, but has only a minor effect on in vivo adipogenesis.

General Significance

These studies on in vitro and in vivo preadipcoyte differentiation thus do not support an anti-obesity effect of fumagillin as a result of effects on adipocyte differentiation.  相似文献   

12.
The human adipose tissue is a source of multipotent stem cells   总被引:36,自引:0,他引:36  
Multipotent stem cells constitute an unlimited source of differentiated cells that could be used in pharmacological studies and in medicine. Recently, several publications have reported that adipose tissue contains a population of cells able to differentiate into different cell types including adipocytes, osteoblasts, myoblasts, and chondroblasts. More recently, stem cells with a multi-lineage potential at the single cell level have been isolated from human adipose tissue. These cells, called human Multipotent Adipose-Derived Stem (hMADS) cells, have been established in culture and interestingly, maintain their characteristics with long-term passaging. The adipocyte differentiation of hMADS cells has been thoroughly studied and differentiated cells exhibit the unique feature of human adipocytes. Finally, potential applications of stem cells isolated from adipose tissue in medicine will be discussed.  相似文献   

13.
Recently, it has been found that long-chain fatty acids activate the G protein-coupled receptors (GPRs), GPR120 and GPR40. However, there have been no reports to date on the possible physiological roles of these GPRs in adipose tissue development and adipocyte differentiation. GPR120 mRNA was highly expressed in the four different adipose tissues, and the amount of mRNA was elevated in adipose tissues of mice fed a high fat diet. However, GPR40 mRNA was not detected in any of the adipose tissues. The expression of GPR120 mRNA was higher in adipocytes compared to stromal-vascular (S-V) cells. The level of GPR120 mRNA increased during adipocyte differentiation in 3T3-L1 cells. Similar results were observed in human adipose tissue, human preadipocytes, and cultured adipocytes. Moreover, use of a small interference RNA (siRNA) to down-regulate GPR120 expression resulted in inhibition of adipocyte differentiation. Our results suggest that GPR120 regulates adipogenic processes such as adipocyte development and differentiation.  相似文献   

14.

Background

Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue.

Materials and Methods

We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells.

Results

The Wnt5b, Wnt6, Frizzled 6 (Fzd6), and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6) were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII) and phosphorylated Jun N-terminal kinase (p-JNK) were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin.

Conclusion

Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors accompanied by the inhibition of the Wnt/Ca2+ and JNK signaling pathways, which may be involved in the altered adipocyte cellularity, endogenous adiponectin production, and anti-inflammatory action induced by hyperadiponectinemia.  相似文献   

15.

Objectives

Adult stem cells (ASCs) have great potential for tissue regeneration; however, comparative studies of ASCs from different niches are required to understand the characteristics of each population for their potential therapeutic uses.

Results

We compared the proliferation, stem cell marker expression, and differentiation potential of ASCs from bone marrow, skin dermis, and adipose tissue. ASCs from bone marrow and skin dermis showed 50–100 % increased proliferation in comparison to the ASCs from adipose tissues. Furthermore, ASCs from each stem cell niche showed differential expression of stem cell marker genes, and preferentially differentiated into cell types of their tissue of origin.

Conclusion

Different characters of each ASC might be major factors for their effective use for therapeutics and tissue regeneration.
  相似文献   

16.
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.  相似文献   

17.
A better understanding of the molecular mechanisms that govern human adipose tissue-derived mesenchymal stem cells (hASCs) differentiation could provide new insights into a number of diseases including obesity. Our previous study demonstrated that microRNA-21 (miR-21) controls the adipogenic differentiation of hASCs. In this study, we determined the expression of miR-21 in white adipose tissues in a high-fat diet (HFD)-induced obesity mouse model to examine the relationship between miR-21 and obesity and the effect of miR-21 on hASCs proliferation. Our study showed biphasic changes of miR-21 expression and a correlation between miR-21 level and adipocyte number in the epididymal fat of HFD mice. Over-expression of miR-21 decreased cell proliferation, whereas inhibiting miR-21 with 2'-O-methyl-antisense RNA increased it. Over-expression of miR-21 decreased both protein and mRNA levels of STAT3, whereas inhibiting miR-21 with 2'-O-methyl-antisense RNA increased these levels. The activity of a luciferase construct containing the miR-21 target site from the STAT3 3'UTR was lower in LV-miR21-infected hASCs than in LV-miLacZ infected cells. RNA interference-mediated down-regulation of STAT3 decreased cell proliferation without affecting adipogenic differentiation. These findings provide the evidence of the correlation between miR-21 level and adipocyte number in the white adipose tissue of HFD-induced obese mice, which provides new insights into the mechanisms of obesity.  相似文献   

18.
19.

Background aims

In vitro engineered adipose tissue is in great demand to treat lost or damaged soft tissue or to screen for new drugs, among other applications. However, today most attempts depend on the use of animal-derived sera. To pave the way for the application of adipose tissue–engineered products in clinical trials or as reliable and robust in vitro test systems, sera should be completely excluded from the production process. In this study, we aimed to develop an in vitro adipose tissue model in the absence of sera and maintain its function long-term.

Methods

Human adipose tissue–derived stem cells were expanded and characterized in a xeno- and serum-free environment. Adipogenic differentiation was induced using a completely defined medium. Developed adipocytes were maintained in a completely defined maturation medium for additional 28 days. In addition to cell viability and adherence, adipocyte-specific markers such as perilipin A expression or leptin release were evaluated.

Results

The defined differentiation medium enhanced cell adherence and lipid accumulation at a significant level compared with the corresponding negative control. The defined maturation medium also significantly supported cell adherence and functional adipocyte maturation during the long-term culture period.

Conclusions

The process described here enables functional adipocyte generation and maintenance without the addition of unknown or animal-derived constituents, achieving an important milestone in the introduction of adipose tissue–engineered products into clinical trials or in vitro screening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号