首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
As in other hepatics, the young spermatid of Blasia pusilla contains a well-developed blepharoplast comprising a four-layered multilayered structure (MLS) and two overlying dimorphic basal bodies. The asymmetrical spline (S1 or upper stratum of the MLS) numbers 20 or 21 microtubules (MTs) at its anterior tip and reduces to eight at the posterior limit of the lamellar strip (LS). Behind this the shank of the spline is five or six tubules in width over most of its length, approximately one revolution of the circumference of the gamete. The three-microtubule spline aperture underlies the anterior basal body and like those of most hepatics, it is closed at its anterior end. The asymmetrical LS (approx. 2.0 μm in length) is characterized by a right-hand posterior notch which lies below the spline aperture at the region of the cartwheel configuration of the anterior basal body (ABB). The staggered dimorphic basal bodies overlap for approximately one third of their lengths. Both lie parallel to the long axis of the spline. As in other hepatics, the ABB (1.2 μm in length) is subapical and comprises an anterior hub extension with progressive rearward additions of lateral, dorsal and ventral triplets. Over most of its length (2.1 μm) the longer posterior basal body (PBB) consists of a distinct central hub and three ventral triplets. Transition zones of both basal bodies contain stellate configurations into which the two central axonemal MTs frequently extend. The blepharoplast of Blasia shows several features in common with leafy, simple thalloid and complex thalloid liverworts. Compared with the few Metzgeriales observed thus far, the LS is less elongate and the basal bodies less staggered. Dimensions of basal body components and spline dimensions, however, are comparable to those of most leafy and thalloid hepatics. Striking similarities with the complex thalloid liverworts include a posterior notch in the LS and a spline aperture three MTs wide.  相似文献   

2.
Summary Ultrastructural observations reveal that the spermatozoids of the hornwortsNotothylas andPhaeoceros contain two mitochondria and not one as described previously. Mitochondrial ontogeny and nuclear metamorphosis during spermiogenesis in these plants differ from all other archegoniates. The discovery that the posterior region of the coiled nucleus (when viewed from the anterior aspect) lies to the left of the anterior, in striking contrast to the dextral coiling of the nucleus of spermatozoids of other embryophytes, underlines the isolated nature of the hornworts among land plants. As the blepharoplast develops, the numerous ovoid mitochondria initially present in the nascent spermatid fuse to form a single elongated organelle which is positioned subjacent to the MLS and extends down between the nucleus and plastid. At the onset of nuclear metamorphosis, the solitary mitochondrion has separated into a larger anterior mitochondrion (AM) associated with the MLS and a much smaller posterior mitochondrion (PM) adjacent to the plastid. The PM retains its association with the plastid and both organelles migrate around the periphery of the cell as the spline MTs elongate. By contrast, in moss spermatids, where mitochondria undergo similar fusion and division, the AM is approximately the same size as the PM and the latter is never associated with the spline. As in other archegoniates, except mosses, spline elongation precedes nuclear metamorphosis in hornworts. Irregular strands of condensed chromatin compact basipetally to produce an elongated cylindrical nucleus which is narrower in its mid-region. During this process excess nucleoplasm moves rearward. It eventually overarches the inner surface of the plastid and entirely covers the PM.Abbreviations ABB anterior basal body - AM anterior mitochondrion - LS lamellar strip - MLS multilayered structure - MT microtubule - PBB posterior basal body - PM posterior mitochondrion  相似文献   

3.
《Journal of bryology》2013,35(2):375-377
Abstract

Ultrastructural analyses of mid-stage spermatids of Hypnum jutlandicum and H. mammillatum reveal a maximally structured blepharoplast closely similar in most respects to the other moss taxa previously investigated. The multilayered structure is four-layered and the dimorphic basal bodies highy staggered. The latter are inserted into the gamete in a slightly staggered subapical position. Both are longer than those reported for the majority of mosses and hepatics. Like other true mosses, the posterior basal body diverges from the longitudinal axis of the spermatid and is associated with a solitary microtubule which is equally divergent from the main body of the spline. In contrast to previous reports on other mosses, the stray microtubule of Hypnum is here interpreted as remaining separate from the spline, i.e., it does not converge posteriorly with the body of the spline.

The lamellar strip of Hypnum is roughly oblong in outline with an acute anterior tip which extends beyond the spline microtubules both anteriorly and on the righthand side. The posterior margin of the lamellar strip rapidly tapers from right to left. Like most mosses, the lamellar strip is approximately the same length as the anterior basal body and terminates at the level of the anterior basal body transition zone. In hepatics, in contrast, the lamellar strip subtends the posterior basal body over most of its length.  相似文献   

4.
The blepharoplast in a young, developing spermatid of Marchantia polymorpha, is a composite structure consisting of two basal bodies and a subjacent narrow band of axonemal-type tubules that we have termed the "spline." For most of its length, the spline consists of six long parallel tubules that nearly encircle the cell. The spline anterior is asymmetrically widened for about 2 µ by shorter tubules of the same kind. The lateral displacement of three long, adjacent marginal tubules by three short intervening tubules at the spline tip produces a long narrow aperture. Distally, the aperture is closed by the convergence of the displaced tubules with another trio of long tubules. Together, these form the six-membered cell-encircling portion. The expanded spline anterior has, at this stage of development, the four-layered (Vierergruppe) structure, of which the aforementioned tubules constitute the uppermost layer. The lower three strata consist of diagonal fins, elongated chambers, and fine tubules, respectively. The two flagellar bases lie close above the spline tip—one slightly anterior to the other—and diverge unequally from the spline axis. A few triplets extend proximally from the basal bodies, but do not connect with the spline. The anterior basal body is longer than the posterior one.  相似文献   

5.
Ultrastructural observations reveal that the spermatozoid of Lycopodium obscurum is crescent shaped and contains two posteriorly directed flagella that are inserted at the front of the cell. The nucleus is broad and elongated with a narrow posterior projection or nuclear diverticulum. Spline microtubules (MTs) number 180 at their maximum and provide the framework for the cell. These MTs extend from the anterior of the locomotory apparatus and along the outermost surface of the nucleus, with a central shank of 14–17 MTs encircling the cell for at least one-third gyre beyond the nucleus. The two basal bodies are slightly staggered and positioned at the front of the cell over a highly elongated multilayered structure (MLS). The MLS extends laterally around the cell anterior and curves posteriorly over the nucleus. One large anterior mitochondrion is situated subjacent to the MLS, while numerous small mitochondria are scattered near or among the lobes of the single plastid. The plastid rests on the inner nuclear surface and contains numerous large starch grains. This cell differs from that of L. cernuum, the only other species of Lycopodium examined to date, in that it is more elongated and has an anterior-posterior orientation of the nucleus, basal bodies, MLS, and spline. Comparisons with coiled gametes of bryophytes and Selaginella suggest that some degree of coiling and cell streamlining may be ancestral in archegoniate spermatozoids.  相似文献   

6.
At maturity, spermatozoids of the green algaChara vulgaris are biflagellated, contain little cytoplasm, and coil for approximately 2 1/2 gyres within the mother cell wall. The anterior of the cell contains an ovoid headpiece anchoring two slightly staggered basal bodies that are positioned above and directly in front of approximately 30 linearly arranged mitochondria. An elongated stellate pattern occupies the transition zone between the BBs and axonemes. Flagella emerge from the cell just in front of the nucleus and encircle the full length of the spermatozoid. The spline comprises a maximum of 38 microtubules surrounding the anterior mitochondria and gradually decreases posteriorly to a minimum of 11. The dense nucleus is narrow, cylindrical, and occupies the central revolution of the cell. Six starch-laden plastids and associated mitochondria are linearly arranged at the cell posterior. Phylogenetic analyses of charalean taxa and archegoniates based on spermatogenesis strongly support the orderCharales, withNitella as the sister group toChara. Diagnostic features ofChara spermatozoids include absence of a lamellar strip and axonemes embedded in the cell for almost the entire length of the anterior mitochondria. Potential relationships amongCharales, Coleochaetales and archegoniates are evaluated in regards to the probable course of evolution of streamlined biflagellated gametes.  相似文献   

7.
Summary Analysis of thin sections shows that the blepharoplast in an early spermatid ofLycopodium consists of two basal bodies and the subtending spline apparatus. The latter has a 4-layered or Vierergruppe organization much like that reported for certain bryophytes and vascular plants. During the course of spermatid maturation the vertically lamellate S2 stratum of the spline apparatus is transformed into a thinner layer of dense osmiophilic material, although the vertical lamellae of the S3,4 strata persist. Rarely there occurred double Vierergruppen, presumably anomalous structures in which a single layer of spline microtubules is flanked on each side by two separate sets of S2–4 strata. Longitudinal sections show that the basal bodies in an early spermatid lie parallel and close together with their microtubular triplets imbricating in the same direction. In late spermatids these basal bodies lie antiparallel and widely separated, their triplets now imbricating in opposite directions. This change is intrepreted to result from the relocation of one of the basal bodies to a position halfway around the cell by moving distal end first over the subtending spline. The basal bodies become invested by a globular-textured material not previously observed in plant spermatids. The role of this investing material is tentatively thought to be related to anchorage of the basal bodies.  相似文献   

8.
《Journal of bryology》2013,35(2):247-256
Abstract

A comparative analysis of the young spermatids of Cephalozia and Chiloscyphus reveals the organisation of the Jungermannialian blepharoplast to be basically the same as in other hepatics and mosses. Common features include the four-layered multilayered structure, the spatulate, asymmetrical anterior portion of the spline, and the staggered subapical insertion of the basal bodies, each with proximal triplet extensions. The range of spline widths in the Jungermanniales appears to be as great as in other groups of bryophytes and of no major taxonomic significance, but the position of the spline aperture may be more variable in hepatics than mosses. The lengths of the basal bodies are intermediate between those from unrelated taxa in other orders of hepatics.

However, the data also suggest the Jungermannialian spermatids exhibit many taxonomic variations and novel features. Whereas the left-lateral expansion of the spline in Cephalozia is common to most other bryophytes, a right-lateral expansion is peculiar to Marsupella. Chiloscyphus manifests an intermediate condition: its spline is unequally bilateral, the left-lateral expansion wider than the right. Lateral extensions of the lamellar strip beyond the spline in Cephalozia, Chiloscyphus and Marsupella have been previously recorded only in Anthocerotae. A posterior notch on the right hand side of the lamellar strip in Marchantiales is absent in Chiloscyphus and Cephalozia and has not been observed in the Metzgeriales.  相似文献   

9.
Electron microscopic examination of thin sections showed that the blepharoplast of a young spermatid of Phaeoceros consists of two side-by-side centrioles and an accumulation of osmiophilic, granular matrix at their proximal ends. Lying between these nearly parallel organelles is a dark-staining body that will later disappear at the onset of flagellogenesis. For a brief period the centrioles are oriented perpendicular to the nuclear surface so that the granular matrix at their proximal ends is confluent with the nuclear envelope; furthermore, the nucleoplasm immediately in front of the centrioles becomes densely staining. The multilayered structure (MLS) develops directly under the centrioles. It comprises a band of 12 microtubules (the S1 stratum) and three lower strata (S2–4) whose constitutent lamellae are oriented at an oblique angle to the S1 axis. While the S1 tubules grow rearward over the nucleus which forms a beak adjacent to the posterior end of the lamellar strata, the centrioles are transformed into basal bodies with the distal growth of the axonemes and the proximal growth of the central cartwheels and lowermost triplets. The proximal ends of the basal bodies and the S1 tubules overlying the lamellar strata are invested with osmiophilic matrix that extends down to the S2 layer and may temporarily occlude the lamellar plates. At the onset of nuclear elongation an anterior mitochondrion becomes situated close beneath the lamellar strata which extend laterally beyond the S1 tubules.  相似文献   

10.
The multiciliated sperm of the water fern Marsilea vestita was examined with a view to establishing its suitability as an experimental subject. Time-course experiments revealed spermatid development to be temperature dependent. Sterile techniques were devised for observation of sperm on both a population and an individual basis. Sperm discharge, active and senescing sperm were examined by phase-contrast microscopy. A regular pattern of senescence was ascertained. This included vacuolation of the cytoplasmic vesicle, loss of motility, and ultimate loss of the helical structure of the sperm coil. Sperm life spans were recorded using motility and O2 uptake as criteria. Sperm populations are active 3–3½ hr at ambient temperature (22–25 C). Individual sperm are active less than 1 hr. Sperm suspensions show a decline in O2 uptake which parallels the loss of motility. Various constituents affecting the life span were investigated. A twofold prolongation of the sperm life span occurred in the presence of 0.1 m sucrose. An ultrastructural examination of the mature sperm was made to aid in assessing its metabolic potential. The sperm shows little ultrastructural differentiation. The cytoplasmic vesicle is predominantly composed of starch-containing plastids. The main structural components of the sperm coil are a continuous mitochondrial band, an elongate nucleus, and a series of microtubules which separate the basal bodies from the nucleus and mitochondrion. A comparison of ultrastructural features common to Pteridium and Marsilea was made and factors affecting senescence discussed.  相似文献   

11.
The multilayered structure (MLS) in a spermatid of Marchantia is the morphogenetic blueprint of the headpiece in a mature sperm. As the nucleus begins elongation, a curved, tapered nuclear projection follows the path of microtubules extending from the MLS and becomes inserted into an indented zone at the rear of the asymmetric organelle. The indented zone defines the most forward penetration of the nucleus into the sperm headpiece. Partial disorganization of MLS lower strata nearest the nuclear projection facilitates overlapping of the nucleus with the rearward part of the anterior mitochondrion. At the front of the nascent headpiece, the mitochondrion is stabilized against microtubules following total disorganization of intervening MLS strata. Penetration of the nuclear projection along the MLS and directed disorganization of MLS lower strata control ultimate disposition of headpiece components. The headpiece is isolated and molded into final shape by undercutting and constriction of the cell membrane.  相似文献   

12.
Ultrastructural changes during spermiogenesis in the barnacles, Balanus amphitrite albicostatus, Balanus tintinnabulum rosa, Balanus trigonus and Tetraclita squamosa japonica, and organization of the sperm with special reference to the accessory body were studied. The Golgi complex organizes both the acrosome and the accessory body at different stages during spermiogenesis; the former is formed at the mid-spermatid stage and the latter is formed at the late spermatid stage. The arrangement of the components in the mature filiform sperm is quite unique, with the acrosome, the basal body just behind the acrosome, the axial filament parallel to a long nucleus, and a slender long mitochondrion behind the nucleus. The sperm in the anterior and posterior half of the ejaculatory duct differ from each other in form in that the sperm in the anterior duct are not equipped with the accessory body and the sperm in the posterior duct are. The accessory body can be artificially broken down by some treatments (1 M urea, alkaline sea water: pH 9.0-9.7, low ionic concentration of sea water). The loss of the accessory body from the sperm is assumed to be related to the ferti-lizability of the sperm.  相似文献   

13.
The mature spermatozoid of Lycopodium cernuum is a blunt ended, fusiform cell, 8–10 μm long by 4–5 μm wide. A multilayered structure (MLS) and a subtending anterior mitochondrion are located at the anterior of the cell. The MLS is coiled through 1–1.5 gyres in a shallow sinistral helix around the periphery of the cell. The MLS would be triangular in outline if unwound and laid flat, about 1.4 μm wide, 7.5–8 μm long, and 80 nm thick. The MLS comprises four layers, S1–S4. The S1 forms the spline, a supportive sheet of microtubules; the S2, lamellate in younger stages, is an homogeneous, darkly staining layer in the mature sperm; the S3 and S4 retain their lamellate appearance and are delimited by lateral connections. Approximately 200 S1 microtubules extend posteriorly from the MLS at about 45° to the MLS long axis and form a partial sheath around the nucleus. The two basal bodies are located on opposite sides of the cell external to the MLS. Each is tangential to the curve of the MLS and surrounded by a globular matrix. At their attachment, the axonemes are oriented laterally and are antiparallel to each other. Distally, the flagella, each about 38 μm long, trail behind the cell as it swims. The nucleus is roughly ovoid, about 4 μm diam, and centrally or sometimes laterally located. The greater volume of the nucleus is occupied by condensed, amorphic chromatin. Cavities within the chromatin are often seen to contain spheroidal inclusions that have two differently staining regions. The inclusions are also located at the periphery of the chromatin. The posterior of the cell is occupied by several small mitochondria and an amyloplast, about 2 μm diam containing numerous starch grains.  相似文献   

14.
Coaxial centrioles and a microtubule organizing center (MTOC) constitute each centrosome in spermatid mother cells of Marchantia polymorpha. During cell division the centrosome separates at its midregion and the two centrioles undergo a planar rotation that brings them to lie somewhat staggered and nearly parallel with their proximal ends embedded in osmiophilic granular material similar in appearance to that of the MTOC. Microtubules of the multilayered structure (MLS) arise in this material below the posterior centriole and parallel to its long axis. The rotation of centrioles and the initiation of S1 tubules below the posterior centriole determine polarity of the incipient blepharoplast. Lower MLS strata are formed under the anterior centriole by the compaction of granular, osmiophilic matrix. Formation and growth of S2 vertical lamellae occur at the left front edge of the MLS in association with MTOC-like matrix localized near the cell membrane. The MLS enlarges to about 0.4 μm wide by 0.6 μm long and is ovoid in outline except for a short distal projection underlying the posterior centriole. Subsequently the lamellae are transformed into homogenous, osmiophilic matrix that contributes directly to the expansion of all MLS strata including microtubules. The stratum of lamellae is interpreted as a planar MTOC subject to morphogenetic control. Each of the four strata grows proximally while the tapering distal projection lengthens beneath the posterior basal body. Dense matrix above the MLS, apparently elaborated by the S2 layer, is organized into cartwheel and triplet components of the basal bodies’ proximal extensions. Organization of triplet tubules proceeds from proximal to distal toward preexisting triplets. Osmiophilic matrix contributes to the formation of microtubule keels and osmiophilic crests and may serve as a cementing material that stabilizes the spatial relationships of blepharoplast components. After full expansion of the MLS’ lower strata, the S2 layer is reorganized into lamellae. Flagellar growth in Marchantia is postulated to involve a process whereby subunits or their precursors are elaborated by the MLS, translocated to the distal end of the flagellum and incorporated into the axonemal tubules. When MLS microtubules elongate to form a long, narrow band, the distal half of the S2 layer is again in the osmiophilic matrix state.  相似文献   

15.
Transmission electron microscopic examination of Cephaleuros virescens Kunze growing on leaves of Camellia spp. and Magnolia grandiflora L. indicates that unreleased zoospores in mature zoosporangia are similar to those produced by the related genus Phycopeltis epiphyton Millardet and unlike the quadriflagellate motile cells produced by taxa in other families of Chlorophyta. The zoospores bear four smooth isokont bilaterally “keeled” flagella containing typical “9 + 2” axonemes and lacking scales. Flagellar insertion is apical and the parallel basal bodies overlap laterally at two levels. A cross section through the four basal bodies shows a trapezoidal arrangement wherein the two upper (anterior) basal bodies are closer together than are the lower (posterior) two. Serial sections indicate that diagonally opposing upper and lower basal bodies anchor flagella which emerge from the same side of the apical papilla. Each of the four basal bodies is associated with a microtubular spline which extends beneath the plasmalemma to the posterior end of the zoospore. A distinct multilayered structure is associated with each of the lower basal bodies. A nucleus, mitochondria (two of which are closely associated with the nucleus and spline microtubules), a chloroplast, and cytoplasmic haematochrome droplets are present in each zoospore. Pyrenoids and eyespots are absent. Flagellar insertion is characterized by “reversed bilateral symmetry”; and zoospores with both right-handed and left-handed arrangements are produced. The ultrastructure of the zoospores clearly indicates that: 1) the mode of flagellar insertion: 2) morphology, number, and arrangement of multilayered structures, and 3) bilaterally keeled flagella are characteristic of the Chroolepidaceae.  相似文献   

16.
Halton D. W. &; Hardcastle A. 1976. Spermatogenesis in a monogenean, Diclidophora merlangi. International Journal for Parasitology6: 43–53. Development of the spermatozoa in the testis of a polyopisthocotylean fish-gill fluke, Diclidophora merlangi, has been examined by light and electron microscopy. Spermatogonial cells are typically undifferentiated and display numerous free ribosomes and relatively little cytoplasm. Successive mitotic divisions produce spermatocytes which are characterized by expansion of the ER and the development of Golgi complexes. Nuclear division is followed by incomplete cytokinesis so that spermatocytes and subsequent stages are joined and develop syncytially. Nuclear synaptonemal complexes mark the first division of the meiotic phase, the second giving rise to a rosette of 32 spermatids. During spermateleosis, the spermatid nucleus condenses and migrates into a conical-shaped projection of cytoplasm. A centriole-like structure and basal bodies, anchored by a pair of attached rootlets, produce axial filaments that grow out from the spermatid and eventually fuse with the nuclear projection. Spermatozoa are then released from the residual cytoplasm. Each spermatozoon is approximately 325 μm in length and 2 μm maximum diameter and in section shows a nucleus, mitochondrion, paired axial units which conform to the “9 +1” pattern described for other platylelminthes, particles of β-glycogen, and a line of micro-tubules around the inner aspect of the limiting membrane.  相似文献   

17.
This study describes the sperm morphology of the mayfly Hexagenia (Pseudeatonica) albivitta (Ephemeroptera). Its spermatozoon measures approximately 30 μm of which 9 μm corresponds to the head. The head is composed of an approximately round acrosomal vesicle and a cylindrical nucleus. The nucleus has two concavities, one in the anterior tip, where the acrosomal vesicle is inserted and a deeper one at its base, where the flagellum components are inserted. The flagellum is composed of an axoneme, a mitochondrion and a dense rod adjacent to the mitochondrion. A centriolar adjunct is also observed surrounding the axoneme in the initial portion of the flagellum and extends along the flagellum for at least 2 μm, surrounding the axoneme in a half‐moon shape. The axoneme is the longest component of the flagellum, and it follows the 9+9+0 pattern, with no central pair of microtubules. At the posterior region of the flagellum, the mitochondrion has a dumb‐bell shape in cross sections that, together with the rectangular mitochondrial‐associated rod, is responsible for the flattened shape of the flagellum. An internal membrane is observed surrounding both mitochondrion and its associated structure.  相似文献   

18.
Flagellar and basal body development during cell division was studied in the biflagellate green alga Spermatozopsis similis Preisig et Melkonian by light microscopy of immobilized living cells, statistical analysis of flagellar lengths during the cell cycle, and electron microscopy of cells and isolated cytoskeletons. Interphase cells display two flagella of unequal/subequal length. An eyespot located in an anterior lobe of the chloroplast is connected to the basal body bearing the shorter flagellum by means of a five-stranded microtubular root. Until cell division, the two parental flagella attain the same length. During cell division, each cell forms two new flagella that grow to a length of 1.5 μm before they are distributed in a semiconservative fashion together with the parental flagella to the two progeny cells at cytokinesis. During the following interphase, the flagella newly formed during the preceding cell division grow to attain the same length as the parental flagella until the subsequent cell division. The shorter of the two flagella of a cell thus represents the developmentally younger flagellum, which transforms to the mature state during two consecutive cell cycles. Interphase cells display only two flagella-bearing basal bodies; two nascent basal bodies are formed during cell division and are connected to the microtubular d-roots of respective parental basal bodies with which the newly formed basal bodies are later distributed to the progeny cells. During segregation, basal body pairs shaft into the 11/5 o'clock direction, thus conserving the 1/7 o'clock configuration of basal body pairs of interphase cells. Prior to chloroplast and cell division, an eyespot is newly formed near the cell posterior in close association with a 1s microtubular root, while the parental eyespot is retained. During basal body segregation, eyespot-root connections for both the old and newly formed eyespots are presumably lost, and new associations of the eyespots with the 2s roots of the newly formed basal bodies are established during cytokinesis. The significance of this “eyespot-flagellar root developmental cycle” for the absolute orientation of the progeny cells is discussed.  相似文献   

19.
The intracellular structural relationships between the flagella and haptonema in Chrysochromulina acantha Leadbeater & Manton (Prymnesiophyceae) were studied in detail and a reconstruction is presented. Three micro-tubular roots are associated with the flagellar apparatus. The largest, consisting of a sheet of approximately 20 microtubules, has its origins at the base of the left basal body. The main body of microtubules passes over the surface of a mitochondrion toward the left chloroplast and apparently terminates at a pair of microtubules oriented perpendicularly to it. Four microtubules diverge from the sheet and pass behind the left basal body. Two other roots–one consisting of a 2 + 2 + 1 arrangement of microtubules, the other of a single microtubule only—are associated with the right basal body. The two basal bodies are connected by distal and proximal fibers, and they are linked also to the base of the haptonema, three fibers extending from the haptonemal base to the right basal body, one only to the left. An additional fiber extending from the right basal body passes between the left basal body and the base of the haptonema, terminating at the largest microtubular root. Lateral extensions link this fiber to both the left basal body and the haptonematal base. Negative staining of isolated root systems of C. simplex Estep et al. shows that the arrangement of microtubules and fibrous connections is similar to that in C. acantha. The root system of C. acantha is compared to those of other members of the Prymnesiophyceae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号