首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为研究过氧化物酶体脂肪酸β-氧化及D-双功能蛋白在糖尿病脂代谢紊乱中所起的作用,分析了链脲佐菌素诱导的糖尿病大鼠肝脏过氧化物酶体数量和过氧化物酶体脂肪酸β-氧化及D-双功能蛋白活性的改变,并用蛋白质印迹检测过氧化氢酶和D-双功能蛋白的表达量.发现糖尿病大鼠肝脏过氧化物酶体增殖,过氧化氢酶蛋白量和酶活性显著增加,过氧化物酶体脂肪酸β-氧化增强,D-双功能蛋白含量和酶活性显著降低,脂酰CoA氧化酶、L-3-羟脂酰CoA脱氢酶活性显著增加.对过氧化物酶体脂肪酸β-氧化增强和D-双功能蛋白活性降低与糖尿病脂代谢紊乱的关系进行了初步探讨.  相似文献   

2.
△12-脂肪酸去饱和酶FAD2的基本特性及其在胁迫中的功能   总被引:1,自引:0,他引:1  
脂肪酸去饱和酶(fatty acid desaturase,FAD)催化与载体结合的饱和脂肪酸或不饱和脂肪酸在脂酰链上形成双键.脂肪酸去饱和酶可以分为脂酰ACP去饱和酶、脂酰CoA去饱和酶和脂酰脂去饱和酶三类.而脂酰脂去饱和酶中的△12-脂肪酸去饱和酶(△12 fatty acid desaturase,FAD2)是催化脂肪酸链第12位碳原子形成双键的去饱和酶类,控制着油酸、亚油酸和其他多种不饱和脂肪酸的合成和含量.主要从△12-脂肪酸去饱和酶FAD2的基本特性和在胁迫中的功能进行了综述,并对相关研究领域的未来研究方向进行了展望.  相似文献   

3.
为了解牦牛Bos grunniens睾丸组织在性成熟前后与能量代谢相关的几种酶活力变化,对九龙牦牛睾丸组织中参与糖酵解、三羧酸循环、脂肪酸β-氧化和线粒体呼吸链中几种酶活力做了测定.结果显示,性未成熟的九龙牦牛睾丸组织中β-羟脂酰CoA脱氢酶(HAD)活力显著高于成年九龙牦牛(P<0.01),而乳酸脱氢酶(LDH)、异柠檬酸脱氢酶(ICDH)、细胞色素氧化酶(COX)活力未见显著差异,提示脂肪酸β-氧化在性成熟前的牦牛睾丸组织能量代谢中可能发挥重要作用.  相似文献   

4.
倪郁  郭彦军 《遗传》2008,30(5):561-567
超长链脂肪酸(very long chain fatty acids, VLCFAs)在生物体中具有广泛的生理功能, 它们参与种子甘油酯、生物膜膜脂及鞘脂的合成, 并为角质层蜡质的生物合成提供前体物质。角质层是覆盖在植物地上部分最表层的保护层, 由角质和蜡质组成, 其中蜡质又分为角质层表皮蜡和内部蜡, 在植物生长发育、适应外界环境方面起重要作用。VLCFAs的合成由脂肪酰-CoA延长酶催化, 该酶是由b-酮脂酰-CoA合酶、b-酮脂酰-CoA还原酶、b-羟脂酰-CoA脱水酶和反式烯脂酰-CoA还原酶组成的多酶体系。合成后的VLCFAs通过脱羰基与酰基还原作用进入角质层蜡质合成途径, 形成各种蜡质组分。文章就VLCFAs及角质层蜡质合成代谢途径中相关酶基因研究进展方面做了综述, 并对植物蜡质基因研究中存在的问题提出一些看法。  相似文献   

5.
3羟酰CoA脱水酶是一类催化3羟酰CoA脱水转化成为烯酰CoA形式的酶。本研究以国审油茶品种‘华硕’种子为材料,在已构建的转录组和表达谱数据库的基础之上,采用RACE技术,克隆到一个油茶3羟酰CoA脱水酶基因的cDNA全长,命名为CoHCD(Gen Bank登录号KJ910336)。该基因cDNA全长为1145bp,含有666bp的开放读码框,编码221个氨基酸,分子量为25.2kDa,理论等电点p I为9.4,疏水残基占整个氨基酸残基的48.9%,是亲水性蛋白,具有4个比较明显的跨膜区和蛋白质酪氨酸磷酸酶基序"HGXXGXXRS"。在基因c DNA全长序列的基础上,分别成功地构建了原核表达载体、超表达载体和RNA干扰载体,其中,原核表达载体在宿主细胞BL21(DE3)上成功诱导表达,获得表观分子量约为25 k Da的相应目的蛋白。实时荧光定量PCR分析表明,在5个不同发育时期的油茶种子中CoHCD高效表达主要集中在8~10月,转录最高峰发生在9月,其表达量在种子发育过程中呈增加趋势。  相似文献   

6.
<正> 3-甲基戊烯二酸尿症是一种罕见的,新的亮氨酸代谢缺陷的遗传性疾病。本症是1976年由Robinson等人首先报道。到1982年已报道了5例。(1)3-甲基戊烯二酸的代谢3-甲基戊烯二酸单酰CoA是亮氨酸分解代谢的中间产物。是3甲基巴豆酰CoA羧化作用所产生的,并进一步在3-甲基戊二酸单酰CoA水合酶催化下,分解为3-羟基-3-甲基戊二酸单酰CoA,如果此反应受阻,则3-  相似文献   

7.
灵芝三萜类化合物是灵芝的重要药用成分,具有多种重要的生理功能,灵芝中三萜含量的高低已成为衡量灵芝质量高低的重要指标。灵芝羟甲基戊二酰辅酶A合酶基因(A hy-droxymethylglutary-l CoA synthase,GlHMGS)作为甲羟戊酸途径中的第一个催化酶,催化乙酰CoA与乙酰乙酰CoA生成羟甲基戊二酰CoA,对于灵芝三萜的合成起着十分重要的作用。分别以灵芝总基因组DNA和反转录的原基cDNA为模板,扩增得到GlHMGS基因的全长DNA和cD-NA序列,该基因DNA全长1 870 bp,其中ORF为1 413 bp,编码471个氨基酸,推测的分子量为51.14kD。通过比对获得的DNA和cDNA序列,发现GlHMGS由5个外显子和4个内含子构成。与NCBI数据库中HMGS的蛋白序列比对发现,GlHMGS与解脂耶罗威亚酵母的HMGS表现出最高的同源性(51%)。进化树分析也表明GlHMGS与真菌亲缘关系最近,这与灵芝的物种分类相吻合。通过酿酒酵母HMGS缺陷的菌株证实所得GlHMGS能够使HMGS缺陷的表型得到互补,证实GlHMGS的功能。利用SEFA-PCR技术扩增GlHMGS基因上游启动子序列,该序列长约1 561 bp,用Softberry等软件对启动子序列进行分析,发现GlHMGS基因启动子中包含有明显的TATA-box和CAAT-box,并发现了多个与甾醇、激素和环境压力等调节相关的顺式作用元件。进一步研究发现,茉莉酸甲酯、脱落酸和水杨酸能够提高GlHMGS基因的转录水平。在研究不同发育阶段和不同碳源对GlHMGS基因的影响时,发现GlHMGS基因的表达水平分别在第16天和以麦芽糖为碳源时达到最大。通过过量表达GlHMGS基因能够显著提高灵芝三萜含量。  相似文献   

8.
对香豆酸∶CoA连接酶(4-coumarate: coenzyme A ligase,4CL)是植物苯丙烷类代谢途径中的一个重要的酶.4CL以肉桂酸衍生物(香豆酸、咖啡酸、阿魏酸等)、ATP和CoA为底物合成相应的酰基-CoA酯,这些酰基-CoA酯是一系列重要化合物(如木质素)的前体.4CL的酶催化反应分两步进行:第一步以肉桂酸衍生物和Mg2 -ATP为底物合成酰基-AMP,第二步用CoA取代AMP,产生酰基-CoA酯,催化过程中酶的构象产生明显的变化.因为4CL在木质素的合成中所起的作用,这个酶是通过蛋白质工程方法改进林产品质量的重要靶标.我们通过X射线衍射技术,解析了毛白杨对香豆酸∶CoA连接酶1(Pt4CL1)与其中间产物对香豆酰-AMP的复合物晶体结构,与同家族成员结构比对,确定所获得的蛋白质结构为Pt4CL1催化第二步反应,即酰基-CoA酯合成的构象.结构分析表明:His-234残基在Pt4CL1的酶催化机理中起着多重作用,即通过侧链与AMP磷酸基团形成氢键,降低磷酸基团的负电荷,催化CoA的亲核取代反应;侧链可以采取两种不同的构象以调节CoA进入Pt4CL1的催化中心;His-234的侧链还可能夺取CoA巯基的质子,从而增强CoA的亲核反应活性.突变体酶活数据结果也显示His-234对Pt4CL1的活性非常重要,是Pt4CL1催化中心的活性残基.  相似文献   

9.
大肠杆菌的FabB和FabF均具有长链3-酮基脂酰ACP合成酶活性.除参与长链饱和脂酰链的延伸外,FabB还是合成不饱和脂肪酸的关键酶之一,参与不饱和脂酰ACP的从头合成,最终生成顺-9-十六烯脂酰ACP.而FabF只能将顺-9-十六烯脂酰ACP延伸为顺-11-十八烯脂酰ACP,不参与不饱和脂酰ACP的从头合成.有研究表明,粪肠球菌、乳酸乳球菌、丙酮丁醇梭菌和茄科雷尔氏菌等细菌的FabF同源蛋白,具有类似大肠杆菌FabB和FabF的双功能.为证实该现象是否普遍存在,本研究选取了枯草芽孢杆菌BsfabF、中华苜蓿根瘤菌SmfabF、霍乱弧菌VcfabF、铜绿假单胞菌PafabF1和PafabF2 5个同源基因进行功能鉴定,体外酶学分析表明,5个FabF同源蛋白均具有长链3-酮基脂酰ACP合成酶活性,异体互补大肠杆菌CL28的脂肪酸组分分析显示,SmfabF、VcfabF、PafabF1和PafabF2具有3-酮脂酰ACP合成酶Ⅱ(FabF)活性,遗传互补大肠杆菌温度敏感突变株CY242和CY244的研究显示,仅有PafabF2编码的蛋白拥有3-酮脂酰ACP合成酶Ⅰ(FabB)活性,能互补大肠杆菌fabB的突变.这表明不是所有的FabF同源蛋白均具有3-酮脂酰ACP合成酶Ⅰ和Ⅱ的双重活性.  相似文献   

10.
代谢工程酵母菌合成紫杉烯的研究   总被引:4,自引:0,他引:4  
紫杉烯是紫杉醇生物合成的重要中间体,为在酿酒酵母(Saccharomyces cerevisiae)中建立一个生物合成紫杉烯的代谢途径,克隆了酵母的羟甲基戊二酰CoA(3-hydroxy-3-methylglutarylcoenzyme A,HMG-CoA)还原酶基因和=牛儿基=牛儿基二磷酸(geranylgeranyl diphosphate,GGDP)合酶基因,并构建了其融合表达载体pGBT9/HG;同时构建了包含紫杉烯合酶基因的表达载体pADH/TS;将这两个表达载体共转化酵母细胞,通过GC-MS分析检测工程酵母的代谢产物,结果表明获得的工程酵母能够合成紫杉烯,即在酵母细胞中建立了一个合成紫杉烯的代谢途径。  相似文献   

11.
The 1.9 A structure of the C-terminal dehydrogenase part of the rat peroxisomal monomeric multifunctional enzyme type 1 (MFE-1) has been determined. In this construct (residues 260-722 and referred to as MFE1-DH) the N-terminal hydratase part of MFE-1 has been deleted. The structure of MFE1-DH shows that it consists of an N-terminal helix, followed by a Rossmann-fold domain (domain C), followed by two tightly associated helical domains (domains D and E), which have similar topology. The structure of MFE1-DH is compared with the two known homologous structures: human mitochondrial 3-hydroxyacyl-CoA dehydrogenase (HAD; sequence identity is 33%) (which is dimeric and monofunctional) and with the dimeric multifunctional alpha-chain (alphaFOM; sequence identity is 28%) of the bacterial fatty acid beta-oxidation alpha2beta2-multienzyme complex. Like MFE-1, alphaFOM has an N-terminal hydratase part and a C-terminal dehydrogenase part, and the structure comparisons show that the N-terminal helix of MFE1-DH corresponds to the alphaFOM linker helix, located between its hydratase and dehydrogenase part. It is also shown that this helix corresponds to the C-terminal helix-10 of the hydratase/isomerase superfamily, suggesting that functionally it belongs to the N-terminal hydratase part of MFE-1.  相似文献   

12.
Beta-oxidation of long-chain fatty acids and branched-chain fatty acids is carried out in mammalian peroxisomes by a multifunctional enzyme (MFE) or D-bifunctional protein, with separate domains for hydroxyacyl coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase, and steroid carrier protein SCP2. We have found that Dictyostelium has a gene, mfeA, encoding MFE1 with homology to the hydroxyacyl-CoA dehydrogenase and SCP2 domains. A separate gene, mfeB, encodes MFE2 with homology to the enoyl-CoA hydratase domain. When grown on a diet of bacteria, Dictyostelium cells in which mfeA is disrupted accumulate excess cyclopropane fatty acids and are unable to develop beyond early aggregation. Axenically grown mutant cells, however, developed into normal fruiting bodies composed of spores and stalk cells. Comparative analysis of whole-cell lipid compositions revealed that bacterially grown mutant cells accumulated cyclopropane fatty acids that remained throughout the developmental stages. Such a persistent accumulation was not detected in wild-type cells or axenically grown mutant cells. Bacterial phosphatidylethanolamine that contains abundant cyclopropane fatty acids inhibited the development of even axenically grown mutant cells, while dipalmitoyl phosphatidylethanolamine did not. These results suggest that MFE1 protects the cells from the increase of the harmful xenobiotic fatty acids incorporated from their diets and optimizes cellular lipid composition for proper development. Hence, we propose that this enzyme plays an irreplaceable role in the survival strategy of Dictyostelium cells to form spores for their efficient dispersal in nature.  相似文献   

13.
Beta-oxidation of acyl-CoAs in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. Amino acid sequence alignment of the 2-enoyl-CoA hydratase 2 domain in human MFE-2 with other MFE-2s reveals conserved protic residues: Tyr-347, Glu-366, Asp-370, His-406, Glu-408, Tyr-410, Asp-490, Tyr-505, Asp-510, His-515, Asp-517, and His-532. To investigate their potential roles in catalysis, each residue was replaced by alanine in site-directed mutagenesis, and the resulting constructs were tested for complementation in a yeast. After additional screening, the wild type and noncomplementing E366A and D510A variants were expressed and characterized. The purified proteins have similar secondary structural elements, with the same subunit composition. The E366A variant had a k(cat)/K(m) value 100 times lower than that of the wild type MFE-2 at pH 5, whereas the D510A variant was inactive. Asp-510 was imbedded in a novel hydratase 2 motif found in the hydratase 2 proteins. The data show that the hydratase 2 reaction catalyzed by MFE-2 requires two protic residues, Glu-366 and Asp-510, suggesting that their catalytic role may be equivalent to that of the two catalytic residues of hydratase 1.  相似文献   

14.
2-Enoyl-CoA hydratase 2, a part from multifunctional enzyme type 2, hydrates trans-2-enoyl-CoA to 3-hydroxyacyl-CoA in the (3R)-hydroxy-dependent route of peroxisomal beta-oxidation of fatty acids. Unliganded and (3R)-hydroxydecanoyl coenzyme A-complexed crystal structures of 2-enoyl-CoA hydratase 2 from Candida tropicalis multifunctional enzyme type 2 were solved to 1.95- and 2.35-A resolution, respectively. 2-Enoyl-CoA hydratase 2 is a dimeric, alpha+beta protein with a novel quaternary structure. The overall structure of the two-domain subunit of eukaryotic 2-enoyl-CoA hydratase 2 resembles the homodimeric, hot dog fold structures of prokaryotic (R)-specific 2-enoyl-CoA hydratase and beta-hydroxydecanoyl thiol ester dehydrase. Importantly, though, the eukaryotic hydratase 2 has a complete hot dog fold only in its C-domain, whereas the N-domain lacks a long central alpha-helix, thus creating space for bulkier substrates in the binding pocket and explaining the observed difference in substrate preference between eukaryotic and prokaryotic enzymes. Although the N- and C-domains have an identity of <10% at the amino acid level, they share a 50% identity at the nucleotide level and fold similarly. We suggest that a subunit of 2-enoyl-CoA hydratase 2 has evolved via a gene duplication with the concomitant loss of one catalytic site. The hydrogen bonding network of the active site of 2-enoyl-CoA hydratase 2 resembles the active site geometry of mitochondrial (S)-specific 2-enoyl-CoA hydratase 1, although in a mirror image fashion. This arrangement allows the reaction to occur by similar mechanism, supported by mutagenesis and mechanistic studies, although via reciprocal stereochemistry.  相似文献   

15.

Background

Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings.

Results

Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition.

Conclusion

The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification.  相似文献   

16.
Interconversion of D- and L-isomers of 3-hydroxy-decanoyl-CoA was catalyzed by rat liver homogenate. Cation exchange chromatography followed by ammonium sulfate precipitation and PBE-94 chromatofocusing column was used to separate the peroxisomal bifunctional protein, the classic 2-enoyl-CoA hydratase (crotonase), and a novel 2-enoyl-CoA hydratase. Epimerization activity was lost during the last purification step. None of the above proteins was capable of catalyzing the epimerization by itself, but reconstitution was achieved by recombining crotonase and the novel 2-enoyl-CoA hydratase. Since hydration by the latter enzyme follows a different stereochemical course from that with crotonase, these two hydratases are distinguished as 2-enoyl-CoA hydratase 1 (crotonase) and 2-enoyl-CoA hydratase 2 (the novel hydratase). The data strongly suggested that epimerization in the rat liver proceeds via dehydration-hydration catalyzed by the two different hydratases. The intermediate of this two step mechanism appears to be trans-2-enoyl-CoA.  相似文献   

17.
It is well known that fatty acid chain elongation involves four steps : (a) condensation of a primer with malonyl-CoA to form the β-keto acyl CoA; (b) reduction of the resulting β -keto acyl CoA to a secondary alcohol, β-hydroxyl acyl CoA; (c) dehydration of the alcohol to form trans-2-enoyl CoA; and (d) reduction of the trans-2-enoyl CoA to give an acid 2 carbon atoms longer than the primer. 1–2The enzyme involved in step (c) is trans-2-enoyl-CoA hydratase, It can perform a reversible hydration of α, β-unsaturated fatty acid chain elongation. 3A partial purification of this enzyme has been reported by Bernert and Sprecher. 4The purification of enoyl-CoA hydratase from mycobacterium smegmatis 5and from rat mitochondria have also been reported; 6however, the purification of enoyl-hydratase from rat liver has not been reported.  相似文献   

18.
19.
20.
Synaptonemal complexes (SCs) are evolutionary conserved, meiosis-specific structures that play a central role in synapsis of homologous chromosomes, chiasmata distribution, and chromosome segregation. However, it is still for the most part unclear how SCs do assemble during meiotic prophase. Major components of mammalian SCs are the meiosis-specific proteins SCP1, 2, and 3. To investigate the role of SCP1 in SC assembly, we expressed SCP1 in a heterologous system, i.e., in COS-7 cells that normally do not express SC proteins. Notably, under these experimental conditions SCP1 is able to form structures that closely resemble SCs (i.e., polycomplexes). Moreover, we show that mutations that modify the length of the central alpha-helical domain of SCP1 influence the width of polycomplexes. Finally, we demonstrate that deletions of the nonhelical N- or C-termini both affect polycomplex assembly, although in a different manner. We conclude that SCP1 is a primary determinant of SC assembly that plays a key role in synapsis of homologous chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号