首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Root colonization and induction of an iron stress regulated promoter for siderophore production by Pseudomonas fluorescens 2-79RLI was studied in vitro and in the rhizosphere of different plant species. P. fluorescens 2-79RLI was previously genetically modified with an iron regulated ice nucleation reporter, which allowed calibration of ice nucleation activity with siderophore production. Initial experiments examined ice nucleation activity and siderophore production under different growth conditions in vitro. These studies demonstrated that P. fluorescens 2-79RLI could utilize both Fe-citrate and Fe-phytosiderophore as iron sources, suggesting that production of these compounds by plants would increase iron availability for P. fluorescens 2-79RLI in the rhizosphere. Fe demand and Fe stress were further shown to be a function of nutrient availability and were reduced when carbon was limiting for growth. Subsequent experiments extended these observations to rhizosphere cells. Cells were sampled from the rhizosphere and the rhizoplane. Results of a soil microcosm experiment showed that Fe stress was reduced for P. fluorescens 2-79RLI in the barley rhizosphere as compared to the cells in the rhizosphere.of lupin. In lupin, relative Fe stress of P. fluorescens 2-79RLI was greater at the root tip than in the lateral root zone. In a second experiment comparing zucchini and bean, iron stress was greater for P. fluorescens 2-79RLI associated with zucchini than with bean. In a third experiment with rape plants under P deficient conditions, addition of soluble P was shown to increase Fe stress for P. fluorescens 2-79RLI located at the root tip, but not in the lateral root zone. This study showed that Fe stress of P. fluorescens 2-79RLI in the rhizosphere may be influenced by plant species, P source, root zone and localization of the cells within the rhizosphere.  相似文献   

2.
Previously, we showed that bacterial populations oscillate in response to a moving substrate source such as a root tip, resulting in moving wavelike distributions along roots. For this article, we investigated if bacterial communities fluctuate as a whole or if there is a succession in bacterial composition from peak to peak or within peaks. Rhizosphere microbial communities along roots of wheat Triticum aestivum L. were studied in detail (20–25 rhizosphere and bulk soil samples along the total root length) in two related soils by colony enumeration and culture-independent DNA analysis. Similar to our previous findings, the numbers of copiotrophic and oligotrophic bacteria oscillated with significant harmonics along each root, independent of soil moisture or lateral roots. Shifts in amplified eubacterial 16S rDNA fragments from denaturing gradient gel electrophoresis (DGGE) analysis were detected along the roots. The most abundant and intensively amplified fragments fluctuated in phase with colony-forming unit (CFU) oscillations; fewer amplified fragments with less intensive bands fluctuated out of phase or were restricted to certain root zones. The bacterial species richness along the root was negatively correlated with the numbers of oligotrophic bacterial CFUs. Discriminant analyses on DGGE patterns distinguished between soil types, rhizosphere and bulk soil, and waxing and waning phases in the oscillations along roots. Bacterial compositions shifted within oscillations but were repeated from oscillation to oscillation, supporting the idea that the most abundant bacterial taxa were growing and dying over time and consequently in space, whereas other taxa counterfluctuated or hardly responded to the substrate supplied by the passing root tip.  相似文献   

3.
Induction of high-affinity iron transport during root colonization by Pseudomonas fluorescens Pf-5 (pvd-inaZ) was examined in lupine and barley growing in microcosms. P. fluorescens Pf-5 (pvd-inaZ) contains a plasmid carrying pvd-inaZ; thus, in this strain, ice nucleation activity is regulated by pyoverdin production. Lupine or barley plants were grown for 18 or 8 days, respectively, in soil amended with 2% calcium carbonate and inoculated with P. fluorescens Pf-5 (pvd-inaZ) at a density of 4 x 10(sup8) CFU g (dry weight) of soil(sup-1). A filter paper blotting technique was used to sample cells from the rhizosphere in different root zones, and then the cells were resuspended for enumeration and measurement of ice nucleation activity. The population density of P. fluorescens Pf-5 (pvd-inaZ) in the rhizosphere decreased by one order of magnitude in both lupine and barley over time. The ice nucleation activity ranged from -3.4 to -3.0 log ice nuclei CFU(sup-1) for lupine and -3.0 to -2.8 log ice nuclei CFU(sup-1) for barley, was similar in all root zones, and did not change over time. An in vitro experiment was conducted to determine the relationship between ice nucleation activity and pyoverdin production in P. fluorescens Pf-5 (pvd-inaZ). An ice nucleation activity of approximately -3.0 log ice nuclei CFU(sup-1) was measured in the in vitro experiment at 25 to 50 (mu)M FeCl(inf3). By using the regression between ice nucleation activity and pyoverdin production determined in vitro and assuming a P. fluorescens Pf-5 (pvd-inaZ) population density of 10(sup8) CFU g of root(sup-1), the maximum possible pyoverdin accumulation by P. fluorescens Pf-5 (pvd-inaZ) in the rhizosphere was estimated to be 0.5 and 0.8 nmol g of root(sup-1) for lupine and barley, respectively. The low ice nucleation activity measured in the rhizosphere suggests that nutritional competition for iron in the rhizosphere may not be a major factor influencing root colonization by P. fluorescens Pf-5 (pvd-inaZ).  相似文献   

4.
5.
Investigating the impact of plant species on sulphur (S) availability in the rhizosphere soil is agronomically important to optimize S fertilization. Bulk, rhizosphere soils and the roots of field-grown rape and barley were sampled 7 times (every fortnight), from March to June, at plant maturity. Root carbon (C) and nitrogen (N) in water extract, along with soil SO42−-S, labile soil organic-C (HWC) and -N (HWN) in hot water extract, as well as soil arylsulphatase activity were then monitored. The average concentrations of both HWC and HWN were observed in the following decreasing order: rape rhizosphere soil >barley rhizosphere soil >bulk soil. In parallel, the average contents of water extractable-C and -N in rape roots were higher than those in barley roots. These results suggest that soil C and N contents in hot water extract (including rhizodeposition) were correlated with C and N released by roots. Great ARS activities found in rape rhizosphere soil were accompanied by great SO42−-S mineralization over time. Finally, bulk and rhizosphere soils of rape and barley were pooled from the seven samplings and incubated with the corresponding pooled root water-soluble C of both plant species and glucose-C. After 1 and 9 weeks, a greater net S mineralization (gross mineralization - immobilization) was observed with rape root water-soluble C than with barley root water-soluble C and glucose-C. Conjointly, we found a higher average value of ARS activity in rape rhizosphere than in barley rhizosphere soil. Our findings suggest that plant species, via their rhizodeposition, determine the dynamic of S in soil.  相似文献   

6.
凋萎病是制约杨梅产业发展的严重病害。为了有效防控凋萎病,本研究分析了杨梅健康和感染凋萎病树体各部位及根表土和根围土中细菌和真菌群落的丰富度与多样性的差异。结果表明: 与健康树相比,病树根围土、根表土、根、枝干、枝皮和叶片的细菌和真菌丰富度均发生了显著变化,其中,根表土细菌和枝皮内真菌的丰富度和多样性均显著降低,而枝皮内细菌和根表土的真菌丰富度和多样性均显著升高。病树各部位及根表、根围土细菌和真菌的优势菌相对丰度在门、纲和属水平上发生了明显的变化,在病树枝干、根和根表土中的假单胞菌属及根表土、根围土中的镰刀菌属的相对丰度明显降低,病树根表土及根围土中青霉菌属的相对丰度明显增加。与凋萎病菌同属的拟盘多毛孢菌在病树根内显著减少,而在其他位置均大量增殖,其相对丰度与多数相对丰度较高的真菌呈正相关。本研究结果将为开发杨梅凋萎病的生态改良、培育健康树体和生物防治技术提供有效的理论依据。  相似文献   

7.
The exudation of carbon (C) by tree roots stimulates microbial activity and the production of extracellular enzymes in the rhizosphere. Here, we investigated whether the strength of rhizosphere processes differed between temperate forest trees that vary in soil organic matter (SOM) chemistry and associate with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. We measured rates of root exudation, microbial and extracellular enzyme activity, and nitrogen (N) availability in samples of rhizosphere and bulk soil influenced by four temperate forest tree species (i.e., to estimate a rhizosphere effect). Although not significantly different between species, root exudation ranged from 0.36 to 1.10 g C m?2 day?1, representing a small but important transfer of C to rhizosphere microbes. The magnitude of the rhizosphere effects could not be easily characterized by mycorrhizal associations or SOM chemistry. Ash had the lowest rhizosphere effects and beech had the highest rhizosphere effects, representing one AM and one ECM species, respectively. Hemlock and sugar maple had equivalent rhizosphere effects on enzyme activity. However, the form of N produced in the rhizosphere varied with mycorrhizal association. Enhanced enzyme activity primarily increased amino acid availability in ECM rhizospheres and increased inorganic N availability in AM rhizospheres. These results show that the exudation of C by roots can enhance extracellular enzyme activity and soil-N cycling. This work suggests that global changes that alter belowground C allocation have the potential to impact the form and amount of N to support primary production in ECM and AM stands.  相似文献   

8.
Abstract To determine if spatial variation in soluble carbon sources along the root coincides with different trophic groups of bacteria, copiotrophic and oligotrophic bacteria were enumerated from bulk soil and rhizosphere samples at 2 cm intervals along wheat roots 2, 3, and 4 weeks after planting. There was a moderate rhizosphere effect in one experiment with soil rich in fresh plant debris, and a very pronounced rhizosphere effect in the second experiment with soil low in organic matter. We obtained wavelike patterns of both trophic groups of bacteria as well as water-soluble total organic carbon (TOC) along the whole root length (60 or 90 cm). TOC concentrations were maximal at the root tip and base and minimal in the middle part of the roots. Oscillations in populations of copiotrophic and oligotrophic bacteria had two maxima close to the root tip and at the root base, or three maxima close to the tip, in the middle section, and at the root base. The location and pattern of the waves in bacterial populations changed progressively from week to week and was not consistently correlated with TOC concentrations or the location of lateral root formation. Thus, the traditional view that patterns in bacterial numbers along the root directly reflect patterns in exudation and rhizodeposition from several fixed sources along the root may not be true. We attributed the observed wavelike patterns in bacterial populations to bacterial growth and death cycles (due to autolysis or grazing by predators). Considering the root tip as a moving nutrient source, temporal oscillations in bacterial populations at any location where the root tip passed would result in moving waves along the root. This change in concept about bacterial populations in the rhizosphere could have significant implications for plant growth promotion and bioremediation. Received: 11 May 1998; Accepted: 4 November 1998  相似文献   

9.

Aims

The rhizosphere is a dynamic system strongly influenced by root activity. Roots modify the pH of their surrounding soil causing the soil pH to vary as a function of distance from root surface, location along root axes, and root maturity. Non-invasive imaging techniques provide the possibility to capture pH patterns around the roots as they develop.

Methods

We developed a novel fluorescence imaging set up and applied to the root system of two lupin (Lupinus albus L., Lupinus angustifolius L.) and one soft-rush (Juncus effusus L.) species. We grew plants in glass containers filled with soil and equipped with fluorescence sensor foils on the container side walls. We gained highly-resolved data on the spatial distribution of H+ around the roots by taking time-lapse images of the samples over the course of several days.

Results

We showed how the soil pH in the vicinity of roots developed over time to different values from that of the original bulk soil. The soil pH in the immediate vicinity of the root surface varied greatly along the root length, with the most acidic point being at 0.56–3.36 mm behind the root tip. Indications were also found for temporal soil pH changes due to root maturity.

Conclusion

In conclusion, this study shows that this novel optical fluorescence imaging set up is a powerful tool for studying pH developments around roots in situ.  相似文献   

10.
不同氮效率水稻生育后期根表和根际土壤硝化特征   总被引:1,自引:0,他引:1  
通过田间试验研究了不同氮效率粳稻品种4007(氮高效)和Elio(氮低效)生育后期在N0(0 kgN hm-2)、N180(180 kgN hm-2)和N300(300 kgN hm-2)水平下根表、根际和土体土壤pH值、铵态氮(NH+4-N)和硝态氮(NO-3-N)含量、硝化强度和氨氧化细菌(AOB)数量.结果表明无论是齐穗期、灌浆期还是成熟期,根表土壤pH值均显著低于根际和土体土壤.土壤pH值范围在5.95至6.84之间变化.土壤NH+4-N含量随水稻生长显著下降,且随施氮量增加而显著增加.根表土壤NH+4-N有明显亏缺区,且随距水稻根表距离增加,NH+4-N含量逐渐升高.土壤NO-3-N含量随水稻生长显著增加,施氮处理均显著高于不施氮处理,但N180和N300处理差异不显著.NO-3-N含量表现为根际>土体>根表.水稻根表和根际土壤硝化强度随水稻生长显著下降,而土体土壤硝化强度随时间延长小幅增加.施氮显著提高4007水稻根表土壤在齐穗和收获期硝化强度以及Elio在齐穗期根际硝化强度,但在施氮处理N180和N300中无显著差异.在整个采样期间,土壤硝化强度均表现为根际>根表>土体.水稻根表和根际AOB数量随水稻生长而显著降低,而土体土壤AOB数量无显著变化.例如,根表土壤AOB数量在齐穗期、灌浆期和收获期分别为16.7×105、8.77×105个g-1 dry soil和8.01×105个g-1 dry soil.根表和根际土壤AOB数量无显著差异,但二者显著高于土体土壤AOB数量.就两个氮效率水稻品种而言,土壤pH值基本无差异.4007土壤NH+4-N含量均显著高于Elio.在齐穗期水稻根表、根际和土体土壤NO-3-N含量在N180水平下均表现为Elio显著高于4007.而在灌浆期和收获期,水稻根表、根际和土体土壤则表现为4007显著高于Elio.在所有采样期,两个水稻品种土体土壤硝化强度和AOB数量在3个施氮量下均无显著差异.Elio根表和根际土壤硝化强度和AOB数量在水稻灌浆期之前一直显著高于4007,而在灌浆期之后则显著低于4007,且最终产量和氮素利用率(NUE)显著低于4007,这可能是由于4007灌浆期后硝化作用强,根际产生的NO-3-N含量高,从而4007根吸收NO-3-N的量也高造成的.因此水稻灌浆期和收获期根表和根际硝化作用以及AOB与水稻高产及氮素高效利用密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号