首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A study was carried out to determine the effect of feeding different tree leaves as supplements on nutrient digestion, rumen fermentation and blood parameters of sheep grazing on a semi-arid rangeland. Thirty adult Malpura rams of uniform body weight (39.0 ± 0.75) were divided into five groups of six each. They were grazed as a single flock from 08.00 to 17.00 h on a semi-arid rangeland. After the end of the grazing period, the first group (G1), which was not provided with any supplementation, served as the control. The second group (G2) was supplemented with 200 g of a concentrate mixture per head per day, whereas the third, fourth and fifth groups (G3–G5) were provided with approximately 200 g DM d−1 of freshly cut foliage from Prosopis cineraria, Acacia nilotica and Albezia lebbek. The foliage from P. cineraria contained 133.4 g kg−1 DM condensed tannin (CT) with protein precipitating capacity (PPC) of 66 g kg−1 DM, whereas A. nilotica contained 18.9 g kg−1 DM hydrolysable tannin (HT) with PPC of 11.5 g kg−1 DM. However, A. lebbek did not contain any tannin. The protein contents were 119, 139 and 194 g kg−1 DM, respectively. The DMI (g d−1) was 688, 916, 1024, 1003, 999 in G1, G2, G3, G4 and G5, respectively. Digestible crude protein (DCP) and metabolizable energy (ME) intakes in supplemented groups G2–G5 were higher (P < 0.05) than in the control (G1). Supplementation improved the DM digestibility in all groups, whereas CP digestibility was lower (P < 0.05) in G3 compared to G2, G4 and G5. Rumen fermentation study conducted 6 h after supplementation revealed that total N, ammonia N, and total VFA levels were lower (P < 0.05) in G3 compared to the other supplemented groups. Although the haemoglobin (Hb) levels were similar among groups, blood urea N (BUN) was lowest in G3 compared to the other groups. The initial body weights were similar among groups (mean 39 kg). After 60 days of experimental feeding, all groups maintained their body weight, except the control group (G1), which lost body weight. It was observed, that supplementation with tree leaves containing CT like P. cineraria helps in better rumen fermentation pattern by preventing excessive loss of nitrogen. It was concluded that maximum nutritional benefits of tree leaves could be harvested, if used as supplement rather than as a sole feed.  相似文献   

2.
A study was conducted to evaluate the effects of supplementing with different tree leaves on nutrient digestion, rumen fermentation and blood parameters of sheep. Thirty adult Malpura rams (39.0 ± 0.56 kg) were divided into five groups of six each. They were grazed as a single flock on a semi-arid rangeland and after the end of routine grazing period (08:00–17:00 h), first group (G1), which was not provided with any supplementation, served as control group. Second group (G2) was supplemented with 200 g of a conventional concentrate mixture per head per day, whereas third, fourth and fifth groups (G3, G4 and G5) were supplemented with approximately 200 g dry matter (DM) per day freshly cut foliage from Ailanthes excelsa, Azardirachta indica and Bauhinia racemosa, respectively. Protein content (g kg−1 DM) in A. excelsa, A. indica and B. racemosa foliage was 197, 128 and 132, respectively. A. indica and B. racemosa foliages also contained 123.2 and 211.2 g kg−1 DM condensed tannin (CT) with protein precipitating capacity (PPC) of 16.5 and 46.5 g kg−1 DM. None of the tree leaves contained hydrolysable tannin (HT). Dry matter intake (DMI, g day−1) was 591, 766, 865, 974 and 939 in G1, G2, G3, G4 and G5, respectively. Digestible crude protein (DCP) and metabolisable energy (ME) intakes in supplemented groups G2–G5 were higher (P < 0.05) compared to control (G1). Supplementation improved digestibility of all nutrients in all groups. Rumen fermentation study indicated lower (P < 0.05) ammonia and total N in the rumen liquor collected from G5 sheep compared to the other supplemented groups. Although haemoglobin (Hb, g dl−1) levels showed small changes among groups, blood urea nitrogen (BUN, mg dl−1) was lowest in G5 compared to the other groups. Initial BW were similar among the groups. After 60 days of experimental feeding, all animals maintained their BW, except sheep in the control group (G1), which lost BW. Results indicate that for adult sheep grazing on a semi-arid range, supplementation with a concentrate mixture could be replaced by tree leaves like A. excelsa, A. indica and B. racemosa, during the lean season to maintain their BW. In addition, supplementing with tree leaves containing condensed tannin has advantages in terms of N utilization.  相似文献   

3.
The potential for nutrient load (30, 100 and 350 g N m−2 per year) to alter plant performance under saline conditions (control, 4.5, 9 and 13 dS m−1) was examined in the sedge Bolboschoenus medianus. Relative growth rates (RGR) across nutrient loadings ranged from 30.2 to 41.8 mg g−1 per day in controls and were reduced to 20.9–28.5 mg g−1 per day by salinities of 13 dS m−1. Whilst higher nutrient loads generally increased RGR, the response was smaller at higher salinities. Responses to salinity and nutrient load were specific. Nutrient load increased the RGR via increases in the leaf area ratio (LAR). The LAR ranged from 1.9 to 2.1 m2 kg−1 across salinity treatments at 30 g N m−2 per year, and increased to 2.5–2.8 m2 kg−1 at 350 g N m−2 per year. Salinity reduced the RGR via a reduction in the net assimilation rate (NAR). The NAR in control plants ranged from 14.7 to 16 g m−2 per day across nutrient loadings and decreased to 11–12 g m−2 per day at 13 dS m−1. Carbon isotope discrimination of leaves decreased by 2–3‰ in response to 13 dS m−1 at the lower nutrient loadings. A prominent response of B. medianus to salinity was a change in biomass allocation from culms to tubers. In contrast, the response to nutrient load was characterised by a shift in biomass allocation from roots to leaves.  相似文献   

4.
The production of hGM-CSF was investigated in both a flask and a 5-l bioreactor, using transgenic Nicotiana tabacum suspension cells. While the maximum cell density and secreted hGM-CSF in the flask were 15.4 g l−1 and 6.5 μg l−1, respectively, those in the bioreactor were 15.6 g l−1 and 7.6 μg l−1. No detectable growth inhibition, shorter production of hGM-CSF and reduced cell viability in the batch bioreactor were observed under the specific conditions used compared with the flask culture. To improve the productivity, a perfusion culture was carried out in the bioreactor, with three different perfusion rates (0.5, 1.0 and 2.0 day−1). In all cases, the hGM-CSF in the medium was significantly increased during the overall culture period (16 days), with maximum values 3.0-, 9.4- and 6.0-fold higher than those obtained in the batch cultures, respectively, even though the intracellular hGM-CSF content was not significantly varied by the perfusion rate. In terms of the total amount of hGM-CSF secreted, 205.5, 1073.2 and 1246.3 μg accumulated in the perfusate within 16 days at the perfusion rates of 0.5, 1.0 and 2.0 day−1, respectively. It was concluded that the beneficial effect of perfusion on the production of hGM-CSF originated from the reduced proteolytic degradation due to the lower protease activity caused by the perfusion. Additionally, the cell growth and physiology in the perfusion culture were somewhat negatively affected by the increased perfusion rate, although the dry cell density steadily increased, and as a result, 19.4, 22.4 and 22.9 g l−1 of maximum cells were obtained with perfusion rates of 0.5, 1.0 and 2.0 day−1, respectively. This work highlighted the importance of proteolytic degradation in plant cell cultures for the production of secretory proteins and the feasibility of perfusion strategies for the continuous production of foreign proteins by the prevention of protein loss due to proteolytic enzymes.  相似文献   

5.
Cross-linked waxy maize (CWM) starch dispersions (STDs) of concentration 50 g kg−1 were heated in sucrose solutions containing 0–600 g kg−1 (g sucrose/kg dispersion) at 85 °C at low shear and in intermittently agitated cans at 110 °C. The STDs heated in 0–300 g kg−1 sucrose exhibited antithixotropic behavior, while those heated in 400–600 g kg−1 sucrose exhibited thixotropic behavior. The mean starch granule diameter of the starch dispersions did not show strong dependence on sucrose concentration. The dispersions, especially those with high sucrose concentrations and heated at 110 °C, exhibited G′ versus frequency (ω) profiles of gels. The STDs exhibited first normal stress differences that increased in magnitude with the concentration of sucrose. Values of the first normal stress coefficient of canned dispersions calculated from dynamic rheological data plotted against ω and experimental values plotted against shear rate of some of the STDs overlapped.  相似文献   

6.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) fused with 10 lysine residues at its C-terminus (CGTK10ase) was immobilized onto a cation exchanger by ionic interaction and used to produce -cyclodextrin (CD) from soluble starch. Poly-lysine fused immobilization increased the Vm of the immobilized CGTase by 40% without a change in Km. The activation energies of thermal deactivation (Ea) were 41.4, 28.1, and 25.9 kcal mol−1, respectively, for soluble wild-type (WT) CGTase, soluble CGTK10ase, and immobilized CGTK10ase, suggesting destabilization of CGTase by poly-lysine fusion and immobilization onto a cation exchanger. Maximum -CD productivity of 539.4 g l−1 h−1 was obtained with 2% soluble starch solution which was constantly fed at a flow rate of 4.0 ml min−1 (D = 240 h−1) in a continuous operation mode of a packed-bed reactor. The operational half-life of the packed-bed enzyme reactor was estimated 12 days at 25 °C and pH 6.0.  相似文献   

7.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   

8.
Wheat and barley whole meal flours (WMFs) were subjected to treatment by fermentation, autoclaving, and fermentation followed by autoclaving. The WMFs were analysed for chemical composition, formulated into wet diets (282 g kg−1) and fed to adult mink (Mustela vison) for determination of total tract digestibility of total starch, total carbohydrate, crude protein and fat. Fermentation of WMF/water mixtures inoculated with a Lactobacillus sp. (strain AD2) was performed at 30°C for 16 h. Autoclaving was carried out for 60 min at 120°C. Fermentation increased colony-forming units (CFUs) to about 108 g−1 and lowered pH to 3.7–3.8 in both WMFs. All carbohydrate parameters were affected by type of cereal, and were, except for total starch, affected by treatment. Levels of total dietary fibre and β-glucans decreased by fermentation in both WMFs. The decrease in total β-glucans from 33.5 to 18.4 g kg−1 in barley WMF, was mainly restricted to the soluble fraction. Glucose levels in barley WMF increased simultaneously from 0.6 to 12.3 g kg−1. The main effects of autoclaving were increased levels of total dietary fibre, maltose, and increased hydration capacity. With fermentation prior to autoclaving, increases in levels of the fibre fractions and maltose were prevented while hydration capacity prevailed as an effect of autoclaving. Compared with fermentation alone, the combined treatment increased damaged starch levels and hydration capacity. Digestibilities of total carbohydrate, crude protein and fat were significantly higher for wheat than for barley. Fermentation had no effect on digestibility of total starch or total carbohydrate of wheat, but increased digestibility of total starch of barley significantly from 0.742 to 0.880, and of total carbohydrate from 0.457 to 0.616. Autoclaving had no significant effect on digestibility of total starch and total carbohydrate of wheat. Digestibility of total starch and total carbohydrate in barley increased significantly after autoclaving. Total starch and total carbohydrate digestibility of both wheat and barley were significantly enhanced by combined fermentation and autoclaving compared with fermentation alone. Compared with autoclaving alone, combined fermentation and autoclaving promoted no significant improvement of total starch and total carbohydrate digestibility in wheat, whereas total carbohydrate digestibility in barley increased from 0.605 to 0.672. Fat digestibility was slightly improved by both fermentation and autoclaving. Autoclaving of cereals reduced significantly the faecal dry matter contents of mink. This effect could be counteracted by preceding fermentation. In conclusion, lactic acid fermentation of wheat and especially barley provided chemical changes of benefit for carbohydrate digestion in the mink.  相似文献   

9.
Colonies of the seagrass Halophila ovalis are found growing adjacent to coral Acropora sp. and Seriatopora hystrix in a submarine hot spring (at 15.7 m depth, 28.6°C) at the north coast of Taketomi Island, near the southern tip of Japan. Halophila plants grow in sea water containing sulphide 930 μg S ml−1 and on the substratum with fine precipitates of the submarine hot spring which have sulphide content up to 5400 μg S g−1 DW. The accumulated sulphide concentration reaches as high as 8400 μg S g−1 DW in under ground tissues and 5700 μg S g−1 DW in above-ground tissues, respectively. It is suggested that, not the sulphide concentration but light and possibly water temperature are the limiting factors for the Halophila colonization in the submarine hot spring.  相似文献   

10.
A bacterial flavin-containing monooxygenase (FMO) gene was cloned from Methylophaga aminisulfidivorans MPT, and a plasmid pBlue 2.0 was constructed to express the bacterial fmo gene in E. coli. To increase the production of bio-indigo, upstream sequence size of fmo gene was optimized and response surface methodology was used. The pBlue 1.7 plasmid (1686 bp) was prepared by the deletion of upstream sequence of pBlue 2.0. The recombinant E. coli harboring the pBlue 1.7 plasmid produced 662 mg l−1 of bio-indigo in tryptophan medium after 24 h of cultivation in flask. The production of bio-indigo was optimized using a response surface methodology with a 2n central composite design. The optimal combination of media constituents for the maximum production of bio-indigo was determined as tryptophan 2.4 g l−1, yeast extract 4.5 g l−1 and sodium chloride 11.4 g l−1. In addition, the optimum culture temperature and pH were 30 °C and pH 7.0, respectively. Under the optimized conditions mentioned above, the recombinant E. coli harboring pBlue 1.7 plasmid produced 920 mg of bio-indigo per liter in optimum tryptophan medium after 24 h of cultivation in fermentor. The combination of truncated insert sizes and culture optimization resulted in a 575% increase in the production of bio-indigo.  相似文献   

11.
Peas, the seeds of Pisum sativum, are produced usually in temperate regions but are accepted as a food source worldwide. Traditionally, nonruminant diets utilized peas which had been rejected by the food industry but specific cultivars of feed (or field) peas also have been developed for livestock use. In view of the diversity of varieties, seeding times (spring or winter-sown) and agronomic conditions during the growing season, there is a considerable range in the composition and nutritive value of peas. The seed coat (hull) represents 70 to 140 g kg−1 of the total weight and consists mainly of non-starch polysaccharides, while the major components of the dehulled pea are starch ( 450 g kg−1) and protein ( 250 g kg−1). Published energy values for the whole seed range from 12.2 to 16.6 MJ ME kg−1 DM for pigs and 10.1 to 12.8 MJ TMEN kg−1 DM for poultry. Reported analyses for crude protein vary from 156 to 325 g kg−1 DM, while content and availability of the constituent amino acids vary also with cultivar, seed type and analytical methods. Most concerns about low digestibilities relate to the sulphur amino acids and tryptophan. Potentially detrimental constituents in raw peas include anti-proteases, haemagglutinins, phytic acid and tannins although these appear negligible in Canadian peas. When analytical data are lacking, the following limits to use of peas are suggested: 100, 200 and 350 g kg−1, respectively, in pig starter, grower and finisher diets; 200 g kg−1 in broiler, 250 g kg−1 in turkey and 300 g kg−1 in layer diets.  相似文献   

12.
Because of its novel bioactive properties the production of gymnodimine for use as a pharmaceutical precursor has aroused interest. The dinoflagellate, Karenia selliformis produces gymnodimine when grown in bulk culture using GP + selenium medium but the growth rates (μ) and levels of gymnodimine are low (μ, 0.05 days−1; gymnodimine 250 μg L−1 max). We describe the effects of organic acid additions (acetate, glycolate, alanine and glutamate additions and combinations of these) in enhancing growth and gymnodimine production in axenic cultures. The most effective organic acid combinations in decreasing order were: glycolate/alanine > acetate > glycolate. Glycolate/alanine optimised gymnodimine production by prolonging growth (maximum cell yield, 1.76 × 105 cells mL−1; gymnodimine, 1260 μg L−1; growth rate (μ), 0.2 days−1) compared to the control (growth maximum cell yield, 7.8 × 104 cells mL−1; gymnodimine, 780 μg L−1; μ, 0.17 days−1). Acetate enhanced gymnodimine by stimulating growth rate (μ, 0.23 days−1) and the large concentration of gymnodimine per cell (16 pg cell−1 cf. 9.8 pg cell−1 for the control) suggests a role for this compound in gymnodimine biosynthesis. Amending culture media with Mn2+ additions resulted in slightly decreased growth in control cultures and increased the gymnodimine while in glycolate/alanine cultures growth was stimulated but gymnodimine production decreased. The results suggest that the organic acid can enhance gymnodimine production by either enhancing growth maximum or the biosynthetic pathway.  相似文献   

13.
The effect of changing dilution rate (D) on Bacillus sp. CCMI 1051 at dilution rates between 0.1 and 0.55 h−1 in a glucose-limited medium was studied. Biomass values varied between 0.88 and 1.1 g L−1 at D values of 0.15–0.35 h−1. Maximal biomass productivity was found to be 0.39 g L−1 h−1, obtained at D = 0.35 h−1 and corresponding to a 54.4% conversion of the carbon into cell mass. The highest rate of glucose consumption was 4.45 mmol g−1 h−1 occurring at D = 0.4 h−1. The glucose concentration inside the chemostat was below the detection level starting to accumulate around 0.4 h−1. Growth inhibition of fifteen strains of fungi by the broth of the steady-state cell-free supernatants was assessed. Results showed that the relative inhibition differ among the target species but was not influenced by the dilution rate changing.  相似文献   

14.
We measured eddy covariance fluxes of CO2 and H2O over a flat irrigated olive orchard during growth, in different periods from Leaf Area Index (LAI) of 0.3–1.9; measurements of soil respiration were also collected. The daily net ecosystem exchange flux (FNEE) was practically zero at LAI around 0.4 or when the orchard intercepted 11% of the incoming daily radiation; at the end of the experiment, with LAI of 1.9 (and the fraction of intercepted daily radiation close to 0.5), FNEE was around 10 g CO2 m−2 day−1. The night-time ecosystem respiration (Reco), calculated from eddy fluxes in well-mixed night conditions, show a clear but non-linear dependence with LAI; it ranged from 0.05 to 0.15 mg CO2 m−2 s−1 (in average), being the lower limit ideally close to the heterotrophic soil respiration at the site. The gross primary production flux (FGPP) was linearly related to LAI within the LAI range of this experiment (with 11 g CO2 m−2 day−1 increments per unit of LAI) and to the fraction of intercepted radiation. The maximum rates of FGPP (0.75 mg CO2 m−2 s−1) were obtained in the summer mornings of 2002, at LAI close to 1.9. FGPP was strongly modulated by vapour pressure deficit (VPD) through the canopy conductance, even in absence of water stress. Hence, especially in the summer, the maximum rates of carbon assimilation are reached always before noon. The daily course of FGPP shows a two-phase pattern, first related to irradiance and then to canopy conductance. The water use efficiency (WUE) was, in average, 3.8, 6.3 and 7 g CO2 L−1 in 1999, 2001 and 2002, respectively, with maxima always in the early morning. Hourly WUE was strongly related to VPD (WUE = −10.25 + 22.52 × VPD−0.34). Our results suggest that drip irrigated orchards in general, and olive in particular, deserve specific carbon exchange and carbon budget studies and cannot be easily included in other biomes.  相似文献   

15.
The bioconversion of propionitrile to propionamide was catalysed by nitrile hydratase (NHase) using resting cells of Microbacterium imperiale CBS 498-74 (formerly, Brevibacterium imperiale). This microorganism, cultivated in a shake flask, at 28 °C, presented a specific NHase activity of 34.4 U mgDCW−1 (dry cell weight). The kinetic parameters, Km and Vmax, tested in 50 mM sodium phosphate buffer, pH 7.0, in the propionitrile bioconversion was evaluated in batch reactor at 10 °C and resulted 21.6 mM and 11.04 μmol min−1 mgDCW−1, respectively. The measured apparent activation energy, 25.54 kJ mol−1, indicated a partial control by mass transport, more likely through the cell wall.

UF-membrane reactors were used for kinetic characterisation of the NHase catalysed reaction. The time dependence of enzyme deactivation on reaction temperature (from 5 to 25 °C), on substrate concentrations (from 100 to 800 mM), and on resting cell loading (from 1.5 to 200 μg  ml−1) indicated: lower diffusional control (Ea=37.73 kJ mol−1); and NHase irreversible damage caused by high substrate concentration. Finally, it is noteworthy that in an integral reactor continuously operating for 30 h, at 10 °C, 100% conversion of propionitrile (200 mM) was attained using 200 μg  ml−1 of resting cells, with a maximum volumetric productivity of 0.5 g l−1 h−1.  相似文献   


16.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

17.
Metal concentrations and population parameters of the seagrass Halodule wrightii were determined at three locations at Rio de Janeiro State, Brazil. The possible increase of metal availability in one of these areas, Sepetiba Bay, as a result of dredging of contaminated bottom sediments which ocurred, was evaluated by analyses of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn in root, rhizome and shoots. In addition, analyses were carried out in H. wrightii populations from non-contaminated areas located at northwestern (Cabo Frio) and southeastern (Angra do Reis) regions of Rio de Janeiro State. Concurrently, abundance and density data of the seagrass populations were obtained. It was found that concentration from Sepetiba Bay samples up to 1.6 ± 0.4 μg g−1 of Cd, 12 ± 1.0 μg g−1 of Cr, 27 ± 2.4 μg g−1 of Pb, 291 ± 47 μg g−1 of Mn, 128 ± 23 μg g−1 of Zn were significantly higher than that from two other collection sites. An increase in Cd and Zn concentration was observed in H. wrightii from Sepetiba Bay indicating that metal mobilization from contaminated sediments through dredging activities were, at least in part, transferred to the biotic compartment via accumulation by the seagrass. The populations of seagrass within the region demonstrated quite substantial changes in biomass data but not in shoot or rhizome density during the study. Such changes in biomass are to be expected, as these dynamics are typical of the small, isolated monospecific populations of H. wrightii along the Rio de Janeiro coast.  相似文献   

18.
The course of Cryptosporidium baileyi infection in chickens fed with different doses of fusariotoxins was compared with that of control groups. F-2 toxin levels of 0.187–1.5 mg kg−1 and T-2 toxin levels of 0.187–6.0 mg kg−1 were investigated. The experimental amimals were orally infected with 6 × 105 C. baileyi oocysts at 1 week of age. Total daily oocyst output was monitored by a quantitative method. Acquired immunity was tested at the age of 4 weeks, by ELISA and by a challenge infection with an equal number of oocysts, upon recovery from the primary infection. The results show that in chickens kept on the lower doses of F-2 and T-2 toxins, the parasite infection ran a similar course to that in the control groups, and the animals became resistant to re-infection. However, when higher doses (2.0–6.0 mg kg−1) of T-2 toxin were used, a depression of weight gain was observed with some other physiological parameters (PCV, weight of bursa, weight of thymus, skin thickness in PHA-P skin test) also indicating toxic effect and, simultaneously, the oocyst output decreased significantly and the patent period was slightly prolonged. Although certain modifications of the immune response could be revealed, the chickens became resistant to re-infection. Only early (1 week of age) parasite infection and 6 mg kg−1 T-2 toxin in the feed significantly depressed body weight gain and immunity.  相似文献   

19.
Andreas Hussner  Rainer Lsch 《Flora》2007,202(8):653-660
Floating Pennywort (Hydrocotyle ranunculoides L. fil.) is a worldwide distributed aquatic plant. The species is native to North America and quite common also in Central and South America. In Europe, Japan and Australia it is known as an alien plant, sometimes causing serious problems for affected ecosystems and human use of water bodies. Starting from Western Europe with an eastwards directed spread, Floating Pennywort was recorded in Germany in 2004 for the first time. Since then, the species spread out and got established in western parts of Central Europe. For a definite prediction of the potential of a further spread, data about biology, in particular growth and photosynthesis are needed. Here, regeneration capacity, growth at different nutrient availabilities and photosynthesis of H. ranunculoides were investigated. In addition biomass samples were taken in the field. Results show an enormous regeneration capacity (e.g., by forming new shoots from small shoot fragments), increasing growth rates under increasing nutrient availability and a maximum increase of biomass reaching 0.132±0.008 g g−1 dw d−1. Dense populations of H. ranunculoides growing in ponds and oxbows were found at high nutrient content of the substrate, the biomass reaching there up to 532.4±14.2 g dw m−2. Gas exchange analysis showed a physiological optimum of H. ranunculoides CO2 uptake at temperatures between 25 and 35 °C and high photon flux densities (PPFD) above 800 μmol photons m−2 s−1. In comparison, native Hydrocotyle vulgaris showed an optimum of net photosynthesis at 20–30 °C and a light saturation of CO2 gas exchange at 350 μmol photons m−2 s−1.  相似文献   

20.
An experiment examined intake, growth response and rumen digestion of young sheep fed ad libitum low quality grass hay alone or supplemented with approximately isonitrogenous amounts of barley grain and urea (Bar/N), safflower meal (SAF) or linseed meal (LIN) provided at 3 days intervals. Supplements comprised 13–20% of total DM intake. Sheep fed grass hay alone consumed 60.2 g DM/kg LW0.75/day of hay and an estimated 6.09 MJ metabolizable energy (ME)/day, and were in liveweight (LW) maintenance. Hay intake was decreased (P<0.05) by the Bar/N supplement with a substitution rate of 0.9, but was not changed by the oilseed meal supplements. Each of the supplements increased (P<0.05) estimated ME intake to a similar extent, but LW gain and wool growth were lower (P<0.05) in sheep supplemented with Bar/N than those supplemented with LIN. Rumen degradabilities of the SAF and LIN CP were estimated to be 0.72 and 0.62, respectively. Rumen ammonia concentrations in sheep fed hay alone (average 97 mg NH3/l) were expected to be adequate for microbial activity. Fractional outflow rate (FOR) of liquid from the rumen measured with Co-EDTA (mean 0.109 h−1) was greater than that of Cr-mordanted supplements (mean 0.056 h−1), which was in turn greater than the FOR of Cr-mordanted hay (mean 0.031 h−1). Diet did not affect these FOR. Supplemented sheep accommodated increased DM intake on Day 1 of the 3 day supplementation cycle by increasing rumen digesta load rather than by increasing rate of passage of digesta. Results show that the LW gain of young sheep fed low quality hay was increased more by either oilseed meal than by equivalent amounts of barley grain/urea supplement, apparently due to more efficient utilization of ME for LW gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号