首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Division of labor among workers is a key feature of social insects and frequently characterized by an age‐related transition between tasks, which is accompanied by considerable structural changes in higher brain centers. Bumble bees (Bombus terrestris), in contrast, exhibit a size‐related rather than an age‐related task allocation, and thus workers may already start foraging at two days of age. We ask how this early behavioral maturation and distinct size variation are represented at the neuronal level and focused our analysis on the mushroom bodies (MBs), brain centers associated with sensory integration, learning and memory. To test for structural neuronal changes related to age, light exposure, and body size, whole‐mount brains of age‐marked workers were dissected for synapsin immunolabeling. MB calyx volumes, densities, and absolute numbers of olfactory and visual projection neuron (PN) boutons were determined by confocal laser scanning microscopy and three‐dimensional image analyses. Dark‐reared bumble bee workers showed an early age‐related volume increase in olfactory and visual calyx subcompartments together with a decrease in PN‐bouton density during the first three days of adult life. A 12:12  h light‐dark cycle did not affect structural organization of the MB calyces compared to dark‐reared individuals. MB calyx volumes and bouton numbers positively correlated with body size, whereas bouton density was lower in larger workers. We conclude that, in comparison to the closely related honey bees, neuronal maturation in bumble bees is completed at a much earlier stage, suggesting a strong correlation between neuronal maturation time and lifestyle in both species.  相似文献   

2.
Honey bees allocate tasks along reproductive and non-reproductive lines: the queen mates and lays eggs, whereas the workers nurse the brood and forage for food. Among workers, tasks are distributed according to age: young workers nurse and old workers fly out and forage. This task distribution in the colony is further regulated by an increase in juvenile hormone III as workers age and by pheromones. One such compound is ethyl oleate (EO), a primer pheromone that delays the onset of foraging in young workers. EO is produced by foragers when they are exposed to ethanol (from fermented nectar) while gathering food. EO is perceived by younger bees via olfaction. We describe here the seasonal variation of EO production and the effects of Methoprene, a juvenile hormone analog. We found that honey bee workers biosynthesize more EO during the growing season than during the fall and winter months, reaching peak levels at late spring or summer. When caged workers were fed with syrup+d(6)-ethanol, labeled EO accumulated in the honey crop and large amounts exuded to the exoskeleton. Exuded levels were high for several hours after exposure to ethanol. Treatment with Methoprene increased the production of EO in worker bees, by speeding up its movement from biosynthetic sites to the exoskeleton, where EO evaporates. Crop fluid from bees collected monthly during the growing season showed a modest seasonal variation of in vitro EO biosynthetic activity that correlated with the dry and sunny periods during which bees could forage.  相似文献   

3.
Honey bees undergo a physiological transition from nursing to foraging approximately 21 days after adult emergence. This transition is delayed by ethyl oleate (EO), a primer pheromone produced by foragers when exposed to ethanol from fermented nectar. We demonstrate here that two secreted α/β-hydrolases (BeeBase ID: GB11403 and GB13365) are responsible for the reversible esterification of ethanol with oleic acid, giving EO. Expression of hydrolase GB11403 was shown to be significantly up-regulated in foragers, relative to nurses. Tissue perfusion experiments with labeled substrates consistently localized the highest level of EO production in the head, whereas in situ imaging revealed expression of relevant EO biosynthetic genes and enzymatic activity along the esophagus, the site of ethanol exposure during nectar intake. Both α/β-hydrolases were expressed in Pichia pastoris, purified and were shown produce EO in vitro. Experiments with live bees fed ethanol demonstrated that EO formed in regurgitate accumulates in the honey crop and exudes to the exoskeleton, from where it exerts its primer effect on younger bees.  相似文献   

4.
Sagili RR  Pankiw T  Metz BN 《PloS one》2011,6(2):e16785
Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.  相似文献   

5.
Honeybees show a remarkable behavioral plasticity at the transition from nursing inside the hive to foraging for nectar and/or pollen outside. This plasticity is important for age‐related division of labor in honeybee colonies. The behavioral transition is associated with significant volume and synaptic changes in the mushroom bodies (MBs), brain centers for sensory integration, learning, and memory. We tested whether precocious sensory exposure to light leads to changes in the density of synaptic complexes [microglomeruli (MG)] in the MBs. The results show that exposure to light pulses over 3 days induces a significant decrease in the MG density in visual subregions (collar) of the MB. Earlier studies had shown that foragers have increased levels of juvenile hormone (JH) co‐occurring with a decrease of vitellogenin (Vg). Previous work further established that RNAi‐mediated knockdown of vg and ultraspiracle (usp) induced an upregulation of JH levels, which can lead to precocious foraging. By disturbing both Vg and JH pathways using gene knockdown of vg and usp, we tested whether the changes in the hormonal system directly affect MG densities. Our study shows that MG numbers remained unchanged when Vg and JH pathways were perturbed, suggesting no direct hormonal influences on MG densities. However, mass spectrometry detection of JH revealed that precocious light exposure triggered an increase in JH levels in the hemolymph (HL) of young bees. This suggests a dual effect following light exposure via direct effects on MG reorganization in the MB calyx and a possible positive feedback on HL JH levels. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1141–1153, 2014  相似文献   

6.
Desert ants of the genus Cataglyphis undergo an age‐related polyethism from interior workers involved in brood care and food processing to short‐lived outdoor foragers with remarkable visual navigation capabilities. The quick transition from dark to light suggests that visual centers in the ant's brain express a high degree of plasticity. To investigate structural synaptic plasticity in the mushroom bodies (MBs)—sensory integration centers supposed to be involved in learning and memory—we immunolabeled and quantified pre‐ and postsynaptic profiles of synaptic complexes (microglomeruli, MG) in the visual (collar) and olfactory (lip) input regions of the MB calyx. The results show that a volume increase of the MB calyx during behavioral transition is associated with a decrease in MG numbers in the collar and, less pronounced, in the lip. Analysis of tubulin‐positive profiles indicates that presynaptic pruning of projection neurons and dendritic expansion in intrinsic Kenyon cells are involved. Light‐exposure of dark‐reared ants of different age classes revealed similar effects. The results indicate that this structural synaptic plasticity in the MB calyx is primarily driven by visual experience rather than by an internal program. This is supported by the fact that dark‐reared ants age‐matched to foragers had MG numbers comparable to those of interior workers. Ants aged artificially for up to 1 year expressed a similar plasticity. These results suggest that the high degree of neuronal plasticity in visual input regions of the MB calyx may be an important factor related to behavior transitions associated with division of labor. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 408–423, 2010  相似文献   

7.
Foraging for pollen is an important behavior of the honey bee because pollen is their sole source of protein. Through nurse bees, larvae are the principal consumers of pollen. Fatty acid esters extractable from the surface of larvae, called brood pheromone, release multiple colony-level and individual foraging behaviors increasing pollen intake. In this study pollen forager turnaround time was measured in observation hives supplemented with brood pheromone versus a blank control treatment. Treatment with brood pheromone significantly decreased pollen forager turnaround time in the hive between foraging bouts by approximately 72%. Concurrently, brood pheromone increased the ratio of pollen to non-pollen foragers entering colonies. Brood pheromone has been shown to release most of the mechanisms known to increase pollen intake by colonies acting as an important regulator of colony foraging decisions and growth.  相似文献   

8.
Worker honeybees proceed through a sequence of tasks, passing from hive and guard duties to foraging activities. The underlying neuronal changes accompanying and possibly mediating these behavioral transitions are not well understood. We studied changes in the microglomerular organization of the mushroom bodies, a brain region involved in sensory integration, learning, and memory, during adult maturation. We visualized the MB lips' microglomerular organization by applying double labeling of presynaptic projection neuron boutons and postsynaptic Kenyon cell spines, which form microglomerular complexes. Their number and density, as well as the bouton volume, were measured using 3D-based techniques. Our results show that the number of microglomerular complexes and the bouton volumes increased during maturation, independent of environmental conditions. In contrast, manipulations of behavior and sensory experience caused a decrease in the number of microglomerular complexes, but an increase in bouton volume. This may indicate an outgrowth of synaptic connections within the MB lips during honeybee maturation. Moreover, manipulations of behavioral and sensory experience led to adaptive changes, which indicate that the microglomerular organization of the MB lips is not static and determined by maturation, but rather that their organization is plastic, enabling the brain to retain its synaptic efficacy.  相似文献   

9.
There is an age-related division of labor in the honey bee colony that is regulated by juvenile hormone. After completing metamorphosis, young workers have low titers of juvenile hormone and spend the first several weeks of their adult lives performing tasks within the hive. Older workers, approximately 3 weeks of age, have high titers of juvenile hormone and forage outside the hive for nectar and pollen. We have previously reported that changes in the volume of the mushroom bodies of the honey bee brain are temporally associated with the performance of foraging. The neuropil of the mushroom bodies is increased in volume, whereas the volume occupied by the somata of the Kenyon cells is significantly decreased in foragers relative to younger workers. To study the effect of flight experience and juvenile hormone on these changes within the mushroom bodies, young worker bees were treated with the juvenile hormone analog methoprene but a subset was prevented from foraging (big back bees). Stereological volume estimates revealed that, regardless of foraging experience, bees treated with methoprene had a significantly larger volume of neuropil in the mushroom bodies and a significantly smaller Kenyon cell somal region volume than did 1-day-old bees. The bees treated with methoprene did not differ on these volume estimates from untreated foragers (presumed to have high endogenous levels of juvenile hormone) of the same age sampled from the same colony. Bees prevented from flying and foraging nonetheless received visual stimulation as they gathered at the hive entrance. These results, coupled with a subregional analysis of the neuropil, suggest a potentially important role of visual stimulation, possibly interacting with juvenile hormone, as an organizer of the mushroom bodies. In an independent study, the brains of worker bees in which the transition to foraging was delayed (overaged nurse bees) were also studied. The mushroom bodies of overaged nurse bees had a Kenyon cell somal region volume typical of normal aged nurse bees. However, they displayed a significantly expanded neuropil relative to normal aged nurse bees. Analysis of the big back bees demonstrates that certain aspects of adult brain plasticity associated with foraging can be displayed by worker bees treated with methoprene independent of foraging experience. Analysis of the over-aged nurse bees suggests that the post-metamorphic expansion of the neuropil of the mushroom bodies of worker honey bees is not a result of foraging experience. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
11.
Primer effects of a brood pheromone on honeybee behavioural development   总被引:1,自引:0,他引:1  
Primer pheromones are thought to act in a variety of vertebrates and invertebrates but only a few have been chemically identified. We report that a blend of ten fatty-acid esters found on the cuticles of honeybee larvae, already known as a kairomone, releaser pheromone and primer pheromone, also act as a primer pheromone in the regulation of division of labour among adult workers. Bees in colonies receiving brood pheromone initiated foraging at significantly older ages than did bees in control colonies in five out of five trials. Laboratory and additional field tests also showed that exposure to brood pheromone significantly depressed blood titres of juvenile hormone. Brood pheromone exerted more consistent effects on age at first foraging than on juvenile hormone, suggesting that the primer effects of this pheromone may occur via other, unknown, mechanisms besides juvenile hormone. These results bring the number of social factors known to influence honeybee division of labour to three: worker-worker interactions, queen mandibular pheromone and brood pheromone.  相似文献   

12.
13.
Honeybees selected for the colony level phenotype of storing large quantities of pollen (pollen hoarding) in the nest exhibit greater walking activity than those selected against pollen hoarding. In this study, we use a simple walking assay to demonstrate that walking activity increases with the proportion of high pollen-hoarding alleles in pure and backcrossed strains of bees (high-strain bees > offspring generated from a high backcross > offspring generated from a low backcross > low-strain bees). The trait is heritable but is not associated with markers linked to three quantitative trait loci (QTL) mapped for their effects on pollen hoarding with demonstrated pleiotropic effects on pollen and nectar foraging and learning behavior. However, locomotion in non-selected bees is correlated with responsiveness to sucrose, a trait that correlates with foraging and learning behavior. We propose that pollen-hoarding behavior involves a syndrome of behavioral traits with complex genetic and regulatory architectures that span sensory sensitivity, foraging behavior, and learning. We propose that locomotor activity is the component of this syndrome and reflects the early maturation of the bees that become pollen foragers.  相似文献   

14.
Social Hymenoptera are important models for analyzing functional brain plasticity. These insects provide the opportunity to learn how individuals' social roles are related to flexible investment in different brain regions. We assessed how age, sex, and individual behavior influence brain development in a primitively eusocial paper wasp, Mischocyttarus mastigophorus. Previous research in other species has demonstrated experience-dependent changes in central and primary sensory centers in the brain. The mushroom body (MB) calyx is a central processing region involved in sensory integration, learning and memory and may be particularly relevant to social behavior. We extend earlier cross-sectional studies of female brain/behavior associations by measuring sex- and age-related differences in MB calyx volume, and by quantifying optic lobe and antennal lobe development. Age did predict MB development: calyx neuropils increased in volume with age. We show that MB development differs between the sexes. Males, who frequently depart to seek mating opportunities, have larger MB calyx collars (which receive optic input) than females. In contrast, females have augmented predominantly antenna-innervated MB calyx lips, which may be useful for nestmate recognition and interactions on the nest. Sex differences in MB development increased with age. After accounting for age and sex effects, social aggression was positively correlated with MB calyx volume for both sexes. We found little evidence for relationships among sex, age, or behavior and the volumes of peripheral sensory processing structures. We discuss the implications of gender- and age-related effects on brain volume in relation to male and female life history and reproductive success.  相似文献   

15.
The biogenic amine neurochemical octopamine is involved in the onset of foraging behaviour in honey bees. We tested the hypothesis that octopamine influences honey bee behavioural development by modulating responsiveness to task-related stimuli. We examined the effect of octopamine treatment on responsiveness to brood pheromone (an activator of foraging) and to the presence of older bees in the colony (an inhibitor of foraging in young bees). Octopamine treatment increased responsiveness to brood pheromone and decreased responsiveness to social inhibition. These results identify octopamine both as an important source of variation in response thresholds and as a modulator of pheromonal communication in insect societies. We speculate that octopamine plays more than one role in the organisation of behavioural development indicating a very high level of integration between the neurochemical system and the generation of complex behaviour.  相似文献   

16.
Division of labor is a hallmark of eusocial insects and their ecological success can be attributed to it. Honey bee division of labor proceeds along a stereotypical ontogenetic path based on age, modulated by various internal and external stimuli. Brood pheromone is a major social pheromone of the honey bee that has been shown to affect honey bee division of labor. It elicits several physiological and behavioral responses; notably, regulating the timing of the switch from performing in-hive tasks to the initiation of foraging. Additionally, brood pheromone affects future foraging choice. In honey bees, sucrose response threshold is a physiological correlate of age of first foraging and foraging choice. Brood pheromone has been shown to modulate sucrose response threshold in young bees, but its effects on sucrose response thresholds of bees in advanced behavioral states (foragers) are not known. In this study we examined the sucrose response thresholds of two different task groups, foragers (pollen and non-pollen) and non-foraging bees, in response to honey bee brood pheromone. Sucrose response thresholds were not significantly different between brood pheromone treatment and controls among both non-pollen and pollen foragers. However, the sucrose response threshold of non-foraging bees was significantly higher in the brood pheromone treatment group than in the control group. The switch to foraging task is considered a terminal one, with honey bee lifespan being determined at least partially by risks and stress accompanying foraging. Our results indicate that foragers are physiologically resistant to brood pheromone priming of sucrose response thresholds.  相似文献   

17.
Reproductive investment is a central life history variable that influences all aspects of life. Hormones coordinate reproduction in multicellular organisms, but the mechanisms controlling the collective reproductive investment of social insects are largely unexplored. One important aspect of honey bee (Apis mellifera) reproductive investment consists of raising female‐destined larvae into new queens by alloparental care of nurse bees in form of royal jelly provisioning. Artificial selection for commercial royal jelly production over 40 years has increased this reproductive investment by an order of magnitude. In a cross‐fostering experiment, we establish that this shift in social phenotype is caused by nurse bees. We find no evidence for changes in larval signalling. Instead, the antennae of the nurse bees of the selected stock are more responsive to brood pheromones than control bees. Correspondingly, the selected royal jelly bee nurses are more attracted to brood pheromones than unselected control nurses. Comparative proteomics of the antennae from the selected and unselected stocks indicate putative molecular mechanisms, primarily changes in chemosensation and energy metabolism. We report expression differences of several candidate genes that correlate with the differences in reproductive investment. The functional relevance of these genes is supported by demonstrating that the corresponding proteins can competitively bind one previously described and one newly discovered brood pheromone. Thus, we suggest several chemosensory genes, most prominently OBP16 and CSP4, as candidate mechanisms controlling queen rearing, a key reproductive investment, in honey bees. These findings reveal novel aspects of pheromonal communication in honey bees and explain how sensory changes affect communication and lead to a drastic shift in colony‐level resource allocation to sexual reproduction. Thus, pheromonal and hormonal communication may play similar roles for reproductive investment in superorganisms and multicellular organisms, respectively.  相似文献   

18.
Abstract. Cohorts of worker honey bees from a single parental hive, cross-fostered into colonies which differed in population and other colony parameters, were assessed for activities of enzymes involved in metabolic detoxication. Activities of glutathione S-transferase and mixed-function oxidase enzymes were negatively correlated with foster colony population, but positively correlated with the ratio of larvae (brood)/adult workers. Worker bees which had begun foraging had enzyme activity levels higher than any found in bees which were still performing in-hive duties. Elevated levels of detoxifying enzymes in colonies with low populations and high ratios of larvae/adults may be a protective mechanism to prevent poisoning of larvae by toxins brought to the colony by foragers.  相似文献   

19.
Honeybee workers shift their labors from nursing their brood to foraging according to their age after eclosion. When the queen is lost from the colony, however, some workers become 'laying workers' whose ovaries develop to lay eggs. Here we investigated whether the physiological state of laying workers is more similar to that of nurse bees or foragers by examining the hypopharyngeal gland (HPG) and hemolymph vitellogenin titers. In a normal colony, nurse bees have well-developed HPGs that synthesize 'major royal jelly proteins' and high hemolymph vitellogenin titers, whereas foragers have shrunken HPGs that synthesize 70-kDa alpha-glucosidase and low hemolymph vitellogenin titers. In queenless colonies, however, workers with developed ovaries (laying workers) tended to have more developed HPGs and to synthesize major royal jelly proteins, whereas workers with shrunken HPGs tended to synthesize alpha-glucosidase and to have undeveloped ovaries. Furthermore, the workers with developed ovaries had higher vitellogenin titers than nurse bees, whereas those with undeveloped ovaries had lower vitellogenin titers. These findings indicate that the physiological state of laying workers is similar to that of nurse bees, but opposite that of foragers.  相似文献   

20.
We measured the age at onset of foraging in colonies derived from three races of European honey bees, Apis mellifera mellifera, Apis mellifera caucasica and Apis mellifera ligustica , using a cross-fostering design that involved six unrelated colonies of each race. There was a significant effect of the race of the introduced bees on the age at onset of foraging: cohorts of A. m. ligustica bees showed the earliest onset, regardless of the race of the colony they were introduced to. There also was a significant effect of the race of the host colony: cohorts of bees introduced into mellifera colonies showed the earliest onset of foraging, regardless of the race of the bees introduced. Significant inter-trial differences also were detected, primarily because of a later onset of foraging in trials conducted during the autumn (September–October). These results demonstrate differences among European races of honey bees in one important component of colony division of labor. They also provide a starting point for analyses of the evolution of division of labor under different ecological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号