首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
PAR-3 (partitioning-defective gene 3) is essential for cell polarization in many contexts, including axon specification. However, polarity proteins have not been implicated in later steps of neuronal differentiation, such as dendritic spine morphogenesis. Here, we show that PAR-3 is necessary for normal spine development in primary hippocampal neurons. Depletion of PAR-3 causes the formation of multiple filopodia- and lamellipodia-like dendritic protrusions - a phenotype similar to neurons expressing activated Rac. PAR-3 regulates spine formation by binding the Rac guanine nucleotide-exchange factor (GEF) TIAM1, and spatially restricting it to dendritic spines. Thus, a balance of PAR-3 and TIAM1 is essential to modulate Rac-GTP levels and to allow spine morphogenesis.  相似文献   

2.
The actin-based dynamics of dendritic spines play a key role in synaptic plasticity, which underlies learning and memory. Although it is becoming increasingly clear that modulation of actin is critical for spine dynamics, the upstream molecular signals that regulate the formation and plasticity of spines are poorly understood. In non-neuronal cells, integrins are critical modulators of the actin cytoskeleton, but their function in the nervous system is not well characterized. Here we show that alpha5 integrin regulates spine morphogenesis and synapse formation in hippocampal neurons. Knockdown of alpha5 integrin expression using small interfering RNA decreased the number of dendritic protrusions, spines, and synapses. Expression of constitutively active or dominant negative alpha5 integrin also resulted in alterations in the number of dendritic protrusions, spines, and synapses. alpha5 integrin signaling regulates spine morphogenesis and synapse formation by a mechanism that is dependent on Src kinase, Rac, and the signaling adaptor GIT1. Alterations in the activity or localization of these molecules result in a significant decrease in the number of spines and synapses. Thus, our results point to a critical role for integrin signaling in regulating the formation of dendritic spines and synapses in hippocampal neurons.  相似文献   

3.
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity and behavior, and its malfunction underlies many neurodevelopmental and psychiatric disorders. However, the molecular mechanisms that control dendritic spine morphogenesis have only recently emerged. We summarize recent work that has revealed an important connection between calcium/calmodulin-dependent kinases (CaMKs) and guanine-nucleotide-exchange factors (GEFs) that activate the small GTPase Rac (RacGEFs) in controlling dendritic spine morphogenesis. These two groups of molecules function in neurons as a unique signaling cassette that transduces calcium influx into small GTPase activity and, thence, actin reorganization and spine morphogenesis. Through this pathway, CaMKs and RacGEFs amplify calcium signals and translate them into spatially and temporally regulated structural remodeling of dendritic spines.  相似文献   

4.
Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons lacking EphB expression fail to form dendritic spines in vitro and they develop abnormal spines in vivo. Defective spine formation in the mutants is associated with a drastic reduction in excitatory glutamatergic synapses and the clustering of NMDA and AMPA receptors. We show further that a kinase-defective, truncating mutation in EphB2 also results in abnormal spine development and that ephrin-B2-mediated activation of the EphB receptors accelerates dendritic spine development. These results indicate EphB receptor cell autonomous forward signaling is responsible for dendritic spine formation and synaptic maturation in hippocampal neurons.  相似文献   

5.
Dendritic filopodia are small protrusions on the surface of neuronal dendrites that transform into dendritic spines upon synaptic contact with axon terminals. The formation of dendritic spines is a critical aspect of synaptic development. Dendritic spine morphogenesis is characterized by filopodia shortening followed by the formation of mature mushroom-shaped spines. Here we show that activation of the EphB receptor tyrosine kinases in cultured hippocampal neurons by their ephrinB ligands induces morphogenesis of dendritic filopodia into dendritic spines. This appears to occur through assembly of an EphB-associated protein complex that includes focal adhesion kinase (FAK), Src, Grb2, and paxillin and the subsequent activations of FAK, Src, paxillin, and RhoA. Furthermore, Cre-mediated knock-out of loxP-flanked fak or RhoA inhibition blocks EphB-mediated morphogenesis of dendritic filopodia. Finally, EphB-mediated RhoA activation is disrupted by FAK knock-down. These data suggest that EphB receptors are upstream regulators of FAK in dendritic filopodia and that FAK-mediated RhoA activation contributes to assembly of actin filaments in dendritic spines.  相似文献   

6.
Bae J  Sung BH  Cho IH  Kim SM  Song WK 《PloS one》2012,7(4):e34677

Background

Dendritic spines are small membranous protrusions on the neuronal dendrites that receive synaptic input from axon terminals. Despite their importance for integrating the enormous information flow in the brain, the molecular mechanisms regulating spine morphogenesis are not well understood. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family, and its overexpression is known to reduce cell motility and tumor metastasis. NESH is prominently expressed in the brain, but its function there remains unknown.

Methodology/Principal Findings

NESH was strongly expressed in the hippocampus and moderately expressed in the cerebral cortex, cerebellum and striatum, where it co-localized with the postsynaptic proteins PSD95, SPIN90 and F-actin in dendritic spines. Overexpression of NESH reduced numbers of mushroom-type spines and synapse density but increased thin, filopodia-like spines and had no effect on spine density. siRNA knockdown of NESH also reduced mushroom spine numbers and inhibited synapse formation but it increased spine density. The N-terminal region of NESH co-sedimented with filamentous actin (F-actin), which is an essential component of dendritic spines, suggesting this interaction is important for the maturation of dendritic spines.

Conclusions/Significance

NESH is a novel F-actin binding protein that likely plays important roles in the regulation of dendritic spine morphogenesis and synapse formation.  相似文献   

7.
By regulating actin cytoskeleton dynamics, Rho GTPases and their activators RhoGEFs are implicated in various aspects of neuronal differentiation, including dendritogenesis and synaptogenesis. Purkinje cells (PCs) of the cerebellum, by developing spectacular dendrites covered with spines, represent an attractive model system in which to decipher the molecular signaling underlying these processes. To identify novel regulators of dendritic spine morphogenesis among members of the poorly characterized DOCK family of RhoGEFs, we performed gene expression profiling of fluorescence-activated cell sorting (FACS)-purified murine PCs at various stages of their postnatal differentiation. We found a strong increase in the expression of the Cdc42-specific GEF DOCK10. Depleting DOCK10 in organotypic cerebellar cultures resulted in dramatic dendritic spine defects in PCs. Accordingly, in mouse hippocampal neurons, depletion of DOCK10 or expression of a DOCK10 GEF-dead mutant led to a strong decrease in spine density and size. Conversely, overexpression of DOCK10 led to increased spine formation. We show that DOCK10 function in spinogenesis is mediated mainly by Cdc42 and its downstream effectors N-WASP and PAK3, although DOCK10 is also able to activate Rac1. Our global approach thus identifies an unprecedented function for DOCK10 as a novel regulator of dendritic spine morphogenesis via a Cdc42-mediated pathway.  相似文献   

8.
The morphogenesis of dendritic spines, the major sites of excitatory synaptic transmission in the brain, is important in synaptic development and plasticity. We have identified an ephrinB-EphB receptor trans-synaptic signaling pathway which regulates the morphogenesis and maturation of dendritic spines in hippocampal neurons. Activation of the EphB receptor induces translocation of the Rho-GEF kalirin to synapses and activation of Rac1 and its effector PAK. Overexpression of dominant-negative EphB receptor, catalytically inactive kalirin, or dominant-negative Rac1, or inhibition of PAK eliminates ephrin-induced spine development. This novel signal transduction pathway may be critical for the regulation of the actin cytoskeleton controlling spine morphogenesis during development and plasticity.  相似文献   

9.
Dendritic spines are actin-rich structures, the formation and plasticity of which are regulated by the Rho GTPases in response to synaptic input. Although several guanine nucleotide exchange factors (GEFs) have been implicated in spine development and plasticity in hippocampal neurons, it is not known how many different Rho GEFs contribute to spine morphogenesis or how they coordinate the initiation, establishment, and maintenance of spines. In this study, we screened 70 rat Rho GEFs in cultured hippocampal neurons by RNA interference and identified a number of candidates that affected spine morphogenesis. Of these, Dock180, which plays a pivotal role in a variety of cellular processes including cell migration and phagocytosis, was further investigated. We show that depletion of Dock180 inhibits spine morphogenesis, whereas overexpression of Dock180 promotes spine morphogenesis. ELMO1, a protein necessary for in vivo functions of Dock180, functions in a complex with Dock180 in spine morphogenesis through activating the Rac GTPase. Moreover, RhoG, which functions upstream of the ELMO1/Dock180 complex, is also important for spine formation. Together, our findings uncover a role for the RhoG/ELMO1/Dock180 signaling module in spine morphogenesis in hippocampal neurons.  相似文献   

10.
Previous studies have shown that sensory and motor experiences play an important role in the remodeling of dendritic spines of layer 5 (L5) pyramidal neurons in the cortex. In this study, we examined the effects of sensory deprivation and motor learning on dendritic spine remodeling of layer 2/3 (L2/3) pyramidal neurons in the barrel and motor cortices. Similar to L5 pyramidal neurons, spines on apical dendrites of L2/3 pyramidal neurons are plastic during development and largely stable in adulthood. Sensory deprivation via whisker trimming reduces the elimination rate of existing spines without significant effect on the rate of spine formation in the developing barrel cortex. Furthermore, we show that motor training increases the formation and elimination of dendritic spines in the primary motor cortex. Unlike L5 pyramidal neurons, however, there is no significant difference in the rate of spine formation between sibling dendritic branches of L2/3 pyramidal neurons. Our studies indicate that sensory and motor learning experiences have important impact on dendritic spine remodeling in L2/3 pyramidal neurons. They also suggest that the rules governing experience‐dependent spine remodeling are largely similar, but not identical, between L2/3 and L5 pyramidal neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 277–286, 2016  相似文献   

11.
The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila   总被引:1,自引:0,他引:1  
The diversity of neuronal cells, especially in the size and shape of their dendritic and axonal arborizations, is a striking feature of the mature nervous system. Dendritic branching is a complex process, and the underlying signaling mechanisms remain to be further defined at the mechanistic level. Here we report the identification of shrub mutations that increased dendritic branching. Single-cell clones of shrub mutant dendritic arborization (DA) sensory neurons in Drosophila larvae showed ectopic dendritic and axonal branching, indicating a cell-autonomous function for shrub in neuronal morphogenesis. shrub encodes an evolutionarily conserved coiled-coil protein homologous to the yeast protein Snf7, a key component in the ESCRT-III (endosomal sorting complex required for transport) complex that is involved in the formation of endosomal compartments known as multivesicular bodies (MVBs). We found that mouse orthologs could substitute for Shrub in mutant Drosophila embryos and that loss of Shrub function caused abnormal distribution of several early or late endosomal markers in DA sensory neurons. Our findings demonstrate that the novel coiled-coil protein Shrub functions in the endosomal pathway and plays an essential role in neuronal morphogenesis.  相似文献   

12.
Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 5 (MK5) deficiency is associated with reduced extracellular signal-regulated kinase 3 (ERK3) (mitogen-activated protein kinase 6) levels, hence we utilized the MK5 knockout mouse model to analyze the physiological functions of the ERK3/MK5 signaling module. MK5-deficient mice displayed impaired dendritic spine formation in mouse hippocampal neurons in vivo. We performed large-scale interaction screens to understand the neuronal functions of the ERK3/MK5 pathway and identified septin7 (Sept7) as a novel interacting partner of ERK3. ERK3/MK5/Sept7 form a ternary complex, which can phosphorylate the Sept7 regulators Binders of Rho GTPases (Borgs). In addition, the brain-specific nucleotide exchange factor kalirin-7 (Kal7) was identified as an MK5 interaction partner and substrate protein. In transfected primary neurons, Sept7-dependent dendrite development and spine formation are stimulated by the ERK3/MK5 module. Thus, the regulation of neuronal morphogenesis is proposed as the first physiological function of the ERK3/MK5 signaling module.  相似文献   

13.
Changes in the number, size, and shape of dendritic spines are associated with synaptic plasticity, which underlies cognitive functions such as learning and memory. This plasticity is attributed to reorganization of actin, but the molecular signals that regulate this process are poorly understood. In this study, we show neural Wiskott-Aldrich syndrome protein (N-WASP) regulates the formation of dendritic spines and synapses in hippocampal neurons. N-WASP localized to spines and active, functional synapses as shown by loading with FM4-64 dye. Knock down of endogenous N-WASP expression by RNA interference or inhibition of its activity by treatment with a specific inhibitor, wiskostatin, caused a significant decrease in the number of spines and excitatory synapses. Deletion of the C-terminal VCA region of N-WASP, which binds and activates the actin-related protein 2/3 (Arp2/3) complex, dramatically decreased the number of spines and synapses, suggesting activation of the Arp2/3 complex is critical for spine and synapse formation. Consistent with this, Arp3, like N-WASP, was enriched in spines and excitatory synapses and knock down of Arp3 expression impaired spine and synapse formation. A similar defect in spine and synapse formation was observed when expression of an N-WASP activator, Cdc42, was knocked down. Thus, activation of N-WASP and, subsequently, the Arp2/3 complex appears to be an important molecular signal for regulating spines and synapses. Arp2/3-mediated branching of actin could be a mechanism by which dendritic spine heads enlarge and subsequently mature. Collectively, our results point to a critical role for N-WASP and the Arp2/3 complex in spine and synapse formation.  相似文献   

14.
Development of dendritic spines is important for synaptic function, and alteration in spine morphogenesis is often associated with mental disorders. Rich2 was an uncharacterized Rho-GAP protein. Here we searched for a role of this protein in spine morphogenesis. We found that it is enriched in dendritic spines of cultured hippocampal pyramidal neurons during early stages of development. Rich2 specifically stimulated the Rac1 GTPase in these neurons. Inhibition of Rac1 by EHT 1864 increased the size and decreased the density of dendritic spines. Similarly, Rich2 overexpression increased the size and decreased the density of dendritic spines, whereas knock-down of the protein by specific si-RNA decreased both size and density of spines. The morphological changes were reflected by the increased amplitude and decreased frequency of miniature EPSCs induced by Rich2 overexpression, while si-RNA treatment decreased both amplitude and frequency of these events. Finally, treatment of neurons with EHT 1864 rescued the phenotype induced by Rich2 knock-down. These results suggested that Rich2 controls dendritic spine morphogenesis and function via inhibition of Rac1.  相似文献   

15.
The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity.  相似文献   

16.
17.
We previously reported that the cell surface proteoglycan syndecan-2 can induce dendritic spine formation in hippocampal neurons. We demonstrate here that the EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine formation. Syndecan-2 is tyrosine phosphorylated and forms a complex with EphB2 in mouse brain. Dominant-negative inhibition of endogenous EphB receptor activities blocks clustering of endogenous syndecan-2 and normal spine formation in cultured hippocampal neurons. This is the first evidence that Eph receptors play a physiological role in dendritic spine morphogenesis. Our observations suggest that spine morphogenesis is triggered by the activation of Eph receptors, which causes tyrosine phosphorylation of target molecules, such as syndecan-2, in presumptive spines.  相似文献   

18.
Neuroglycan C (NGC) is a transmembrane-type chondroitin sulfate proteoglycan that is exclusively expressed in the central nervous system. We report that the recombinant ectodomain of NGC core protein enhances neurite outgrowth from rat neocortical neurons in culture. Both protein kinase C (PKC) inhibitors and phosphatidylinositol 3-kinase (PI3K) inhibitors attenuated the NGC-mediated neurite outgrowth in a dose-dependent manner, suggesting that NGC promotes neurite outgrowth via PI3K and PKC pathways. The active sites of NGC for neurite outgrowth existed in the epidermal growth factor (EGF)-like domain and acidic amino acid (AA)-domain of the NGC ectodomain. The EGF-domain caused cells to extend preferentially one neurite from a soma, whereas the AA-domain caused several neurites to develop. The EGF-domain also enhanced neurite outgrowth from GABA-positive neurons, but the AA-domain did not. These results suggest that the EGF-domain and AA-domain have distinct functions in terms of neuritogenesis. From these findings, NGC can be considered to be involved in neuritogenesis in the developing central nervous system.  相似文献   

19.
Previous studies have demonstrated that microribonucleic acids (miRs) are key regulators of protein expression in the brain and modulate dendritic spine morphology and synaptic activity. To identify novel miRs involved in neuronal plasticity, we exposed adult mice to chronic treatments with nicotine, cocaine, or amphetamine, which are psychoactive drugs that induce well-documented neuroadaptations. We observed brain region- and drug-specific changes in miR expression levels and identified miR-29a/b as regulators of synaptic morphology. In vitro imaging experiments indicated that miR-29a/b reduce mushroom-shaped dendritic spines on hippocampal neurons with a concomitant increase in filopodial-like outgrowths, suggesting an effect on synapse formation via actin cytoskeleton remodeling. We identified Arpc3, a component of the ARP2/3 actin nucleation complex, as a bona fide target for down-regulation by miR-29a/b. This work provides evidence that targeting of Arpc3 by miR-29a/b fine tunes structural plasticity by regulating actin network branching in mature and developing spines.  相似文献   

20.
Dendritic arborization is a critical neuronal differentiation process. Here, we demonstrate that syndecan-2 (Sdc2), a synaptic heparan sulfate proteoglycan that triggers dendritic filopodia and spine formation, regulates dendritic arborization in cultured hippocampal neurons. This process is controlled by sterile α and TIR motif-containing 1 protein (Sarm1), a negative regulator of Toll-like receptor 3 (TLR3) in innate immunity signaling. We show that Sarm1 interacts with and receives signal from Sdc2 and controls dendritic arborization through the MKK4-JNK pathway. In Sarm1 knockdown mice, dendritic arbors of neurons were less complex than those of wild-type littermates. In addition to acting downstream of Sdc2, Sarm1 is expressed earlier than Sdc2, which suggests that it has multiple roles in neuronal morphogenesis. Specifically, it is required for proper initiation and elongation of dendrites, axonal outgrowth, and neuronal polarization. These functions likely involve Sarm1-mediated regulation of microtubule stability, as Sarm1 influenced tubulin acetylation. This study thus reveals the molecular mechanism underlying the action of Sarm1 in neuronal morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号