首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In pulmonary sarcoidosis, the marked expansion of CD4+ (helper/inducer) T cells in the alveolar structures of the lung is maintained by local IL-2 release by activated CD4+ HLA-DR+ T cells without concomitant expansion and activation of CD8+ (suppressor/cytotoxic) T cells, suggesting that sarcoid may be associated with a generalized abnormality of CD8+ T cells. Consistent with this concept, evaluation of the expression of the IL-2R on fresh lung T cells from individuals with active sarcoidosis demonstrated that 7 +/- 1% of sarcoid lung CD4+ T cells are spontaneously expressing the IL-2R compared with only 1 +/- 1% lung CD8+ T cells (p less than 0.01). However, stimulation of purified sarcoid blood CD8+ T cells with the anti-T3/TCR complex mAb OKT3 was followed by the normal expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). In addition, lung sarcoid CD8+ T cells responded to OKT3 similarly to normal lung CD8+ T cells and to autologous blood CD8+ T cells as regards expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). Finally, using CD4+ cells activated with allogenic Ag to induce, in coculture, fresh autologous CD8+ cells to suppress proliferation of fresh autologous CD4+ cells to the same Ag, sarcoid CD8+ T cells suppressed CD4+ cell proliferation in a normal fashion (p greater than 0.1). These results demonstrate that sarcoid CD8+ (suppressor/cytotoxic) T cells are competent to respond to a proliferation signal normally and can be induced to normally suppress CD4+ T cell proliferation to Ag, suggesting that the expansion of activated CD4+ T cells in pulmonary sarcoidosis is not due to a generalized abnormality of CD8+ T cells or of their suppressor T cell function.  相似文献   

2.
H-Y-specific and H-2Db-restricted, Lyt-1-2+ T-cell clones ( CTLL ) with graded specific cytotoxic activities on male C57BL/6 (B6) target cells ( 1E3 , ; 2C5 , ++; 2A5 , +, 3E6 , +/-) were tested for their capacity to inhibit the generation of H-Y-specific cytotoxic T lymphocytes (CTL) in vitro. Addition of irradiated lymphocytes of CTLL 1E3 and CTLL 3E6 but not those of CTLL 2A5 or CTLL 2C5 abolished the generation of CTL from in vivo primed H-Y-specific precursor cells (CTLP) when added to fresh mixed-lymphocyte cultures (MLC). Exogenous sources of T-cell growth factors (TCGF) did not overcome suppression. Rather the presence of TCGF resulted in a further enhancement of suppressive activities in CTLL 1E3 and 3E6 and the induction of similar activities in cells from CTLL 2A5 and 2C5 , which by themselves were not inhibitory. Moreover when added to similar MLC on Day 1 instead of Day 0, only irradiated cells of CTLL 3E6 but not those of the other three CTLL were suppressive. Induction of suppressive activities in H-Y-specific CTLL was independent of the appropriate male stimulator cells since it was also observed in MLC induced by irrelevant antigens (H-2, trinitrophenol). Furthermore at low cell numbers, irradiated lymphocytes from any of the CTLL consistently enhanced CTL activities generated from H-Y-specific CTLP. This augmenting activity, which was not TCGF, could be transferred by soluble mediators present in antigen-sensitized CTLL cultures. Thus, these data indicate (i) that cytotoxic effector cells can function as suppressor cells in the generation of CTL, (ii) that the cytotoxic activity of cloned CTL does not correlate with their capacity to suppress CTL responses, (iii) that the inhibition of CTL responses by CTLL is not due to simple consumption of T-cell growth factors produced in MLC, and (iv) that different CTL clones may interfere with the generation of CTL at different stages of their maturation. Moreover, the experiments suggest an antigen-independent enhancement of suppression by the interaction of CTL with lymphokines. Together with the augmenting activity evoked by cloned CTL the data provide strong evidence for the expression of multiple immunological functions by one particular subset of T cells and suggest that cytotoxic effector cells can differentially regulate the maturation and/or clonal expression of their precursor cells.  相似文献   

3.
Thyroglobulin (Tg)-binding peripheral blood T cells from a normal individual were fused with a T cell leukemia cell line (Jurkat-AG9) treated by emetine and actinomycin D. Several cell lines were established from thus-prepared human T cell hybridomas. The culture supernatant from one of these lines (Tg-Ts47) whose phenotype was OKT3- 11+ 4+ 8- suppressed the generation of Tg-specific antibody-forming cells from the lymphocytes of patients with Hashimotos' chronic thyroiditis, but not anti-SRBC and anti-ovalbumin antibody production from both autologous and patient lymphocytes. Tg-Ts47-derived factors also bore Tg antigen-binding sites. The suppressive activity of the supernatants was shown in almost all patients lymphocytes tested. This indicated that the supernatants of Tg-Ts47 line contain a suppressive factor specific for Tg antigen and capable of acting across allogeneic barriers.  相似文献   

4.
We previously reported that a population of Fc gamma-receptor+ (Fc gamma R+) suppressor cells present in normal unstimulated rabbit bone marrow inhibited the growth of autologous rapidly proliferating bone marrow cells devoid of Fc gamma R. It is now reported that the Fc gamma R+ bone marrow cells produced a soluble, nondialyzable suppressor factor(s) (SF) which blocked the proliferation of Fc gamma R- bone marrow cells. In addition, the Fc gamma R+ cells and SF significantly inhibited spleen cell proliferation in response to concanavalin A (Con A), phytohemagglutinin, and pokeweed mitogen. The bone marrow SF exhibited a dose-dependent suppression of the growth of IL-2-dependent T lymphocytes in the presence of IL-2. SF also completely blocked the production or release of IL-2 by Con A-stimulated T cells. Thus, these bone marrow natural suppressor cells produced a soluble factor, which regulated the growth of rapidly proliferating bone marrow cells and also regulated T cell reactivity by modulating IL-2 production and activity.  相似文献   

5.
Autologous rosette-forming cells (auto-RFC) were characterized with monoclonal antibodies to various cell surface antigens using a technique combining immunofluorescence and rosette formation. In peripheral blood, auto-RFC were T cells (Leu 1+/OKT3+) the majority being derived from the helper/inducer subset (Leu 3a+/OKT4+). A small proportion of the circulating auto-RFC were Leu 2a+/OKT8+ and virtually none of them bore T10, T6, and DR antigens or peanut agglutinin (PNA) receptors. In the elderly, the percentages of Leu 3a+ auto-RFC increased significantly along with the augmentation of the Leu 3a+ circulating pool. After Con A stimulation of peripheral blood lymphocytes the autorosette population was expanded and therefore their phenotype was again that of helper cells. In the thymus, high levels of autorosettes are found (30 to 50%). Simple or double labeling of the rosetting cells with various monoclonal antibodies permitted the confirmation of the existence of distinct thymocyte subpopulations and moreover to identify the location of the auto-RFC in the intrathymic differentiation scheme. Nearly 70% of the rosetting cells were derived from common thymocytes, those cells defined by the coexpression of T10, T6, T4, and T8 antigens whether or not they were also stained by OKT3 antibodies. The remaining auto-RFC were found with similar frequency among the T4+ and T8+ mature thymocytes. In the spleen low percentages of auto-RFC were found and the majority resided in the Leu 3a+/OKT4+ population, similarly to peripheral blood autorosettes. Taken together, these data suggest that the expression of autologous erythrocyte receptors is acquired in the thymus and is gradually lost during T-cell maturation.  相似文献   

6.
An in vitro culture and assay system was used to determine whether cytotoxic lymphocytes are generated in humans after rickettsial infection. Peripheral blood mononuclear cells (PBMC) were obtained from six individuals with serologic evidence of prior infection with typhus group rickettsiae and from six nonimmune individuals. After PBMC from immune individuals were stimulated in vitro for 7 days with rickettsial antigen, they were capable of lysing typhus group rickettsia-infected, autologous phytohemagglutinin (PHA)-induced blasts, but not uninfected PHA-blasts. No cytotoxic effector cells were generated when either PBMC from immune individuals were placed in culture for 7 days without antigenic stimulation, or when PBMC from nonimmune individuals were stimulated in vitro with antigen for 7 days. Freshly isolated PBMC from immune donors were also unable to lyse typhus group rickettsia-infected autologous PHA-blasts or an autologous rickettsia-infected lymphoblastoid cell line (LCL). Neither supernatants from antigen-stimulated cultures of PBMC from immune donors nor recombinant human interferon-gamma were capable of significantly lysing typhus group rickettsia-infected PHA blasts by this assay. Populations of cytotoxic effector cells depleted of OKT3, OKT4, or OKT8-positive cells by treatment with the respective monoclonal antibodies and complement were assayed for their cytotoxic capacity. The results suggest that the cytotoxic effector cell population is predominantly OKT3 and OKT8-positive, but OKT4-negative. Positive selection with the use of a fluorescence-activated cell sorter also suggested that most of the cytotoxic effector cells are OKT8-positive. PBMC from immune donors after in vitro stimulation with rickettsial antigen were capable of significantly lysing infected autologous LCL or infected HLA-mismatched LCL as compared with the respective uninfected controls. In addition, PBMC from either immune donors or nonimmune donors after stimulation in vitro for 7 days with media containing purified lymphokines were capable of significantly lysing autologous infected LCL as compared with the uninfected autologous control. We conclude that lysis of cells infected with typhus group rickettsiae is mediated by a lymphokine-activated killer.  相似文献   

7.
The ability to grow normal T lymphocytes in long term culture has advanced our understanding of T cell biology. The growth of CD4+ cell lines allowed a further evaluation and appreciation of functional subtypes within this group. Cytotoxic CD8+ T cells have been characterized as well. The routine and continuous culture of Ag-nonspecific CD8+ Ts cells has been difficult to achieve. We have found that CD8+ T cells that suppress T cell proliferation and lack cytotoxic activity against T cells can be routinely obtained from PWM or PHA-stimulated PBMC. Continuous culture of T cell blasts from PWM or PHA-stimulated PBMC resulted in the growth of CD4+ and CD8+ T cells. These lines developed suppressor cell activity within 7 days after stimulation with PWM and 3 to 4 wk after stimulation with PHA. Concomitant with the development of suppressor activity was the loss of CD4+ T cells resulting in homogeneous lines of CD8+ suppressor cells. These cell lines have been maintained in continuous culture for greater than 6 mo by addition of rIL-2 twice weekly and restimulation with feeder cells and PHA every 2 wk. Activity of these cell lines was relatively resistant to irradiation or treatment with mitomycin C. Both cell lines suppressed proliferation of autologous or heterologous CD4+ T cells stimulated with PWM, OKT3, or tetanus toxoid but failed to suppress proliferation of CD4+ T cells in a mixed lymphocyte reaction. CD4+ T cells stimulated with PWM produced equivalent amounts of IL-2 in the presence or absence of Ts cells but failed to express the IL-2R (TAC) on their surface in the presence of Ts cells. By contrast, CD4+ T cell lines or cytotoxic CD8+ T cell lines failed to suppress proliferation of CD4+ T cells. With these results we describe methods for the generation and continuous culture of Ag-nonspecific CD8+ Ts cells and define some of their properties. These cells lines should be helpful in further elucidating the functional and phenotypic repertoire of CD8+ Ts cells.  相似文献   

8.
Normal mouse lymphocytes are not capable of mounting a primary cytotoxic T cell response to Mls encoded, non H-2, allodeterminants, although a strong lymphoproliferative response is observed in primary MLR between Mls incompatible cells. In this study it is reported that in the supernatant of primary cultures between AKR macrophages and CBA/H lymphocytes (H-2 identical, incompatible for Mls and other minor antigens) a suppressor of T cell proliferation in MLR is detected. By contrast, a suppressor is not detected in supernatants from primary cultures between BALB/C macrophages and CBA/H lymphocytes (H-2 incompatible, Mls identical), B10.BR macrophages and CBA/H macrophages and CBA/H lymphocytes (syngeneic) suggesting that the production of the suppressor factor occurs only when an Mls incompatibility exists. The suppressive activity of the Mls incompatible culture supernatant upon MLR between incompatible macrophages and lymphocytes is neither antigen specific nor Mls or H-2 restricted, nor is it due to an irreversible toxic effect on T lymphocytes or macrophages. The inhibition of T cell proliferation could be explained by inhibition of IL 2 production, by blocking its union to T cells or by a combination of both effects. Our findings could help explain previous observations that lymphocytes from mice preimmunized with Mls incompatible cells have a depressed proliferative response as well as depressed cytotoxicity against alloantigens.  相似文献   

9.
The mechanisms whereby formed immune complexes (IC) or immunoglobulin aggregates can suppress further antibody production were explored by culturing normal human peripheral blood mononuclear leukocytes (PBL) with heat-aggregated IgG (HAIgG) and collecting the culture supernatants at 24 hr. These supernatants were found to suppress a pokeweed mitogen (PWM)-induced rheumatoid factor plaque-forming cell (RF-PFC) response in normal individuals. PWM-induced anti-trinitrophenylated sheep red blood cell (TNP-SRBC) PFC were also inhibited by suppressor supernatants from HAIgG-stimulated PBL, suggesting that the polyclonal PFC response was inhibited by a suppressor factor. The suppressor factor inhibited PWM stimulated RF-PFC throughout the culture period, but suppression was maximal at the peak of the RF-PFC response. Suppressor factor was only effective at the initiation of cultures, suggesting that it inhibited early events in the PWM-stimulated RF-PFC response. Molecular weight determination of the suppressor factor by differential membrane fractionation suggested a m.w. range of 30,000 to 50,000, and chromatography on Sephadex G-100 showed a peak activity at an approximate m.w. of 32,000. Studies suggested the factor was not an interferon. Depletion of T lymphocytes by E rosetting and macrophages/monocytes by G-10 adherence did not affect the generation of suppressor factor. Depletion of T lymphocytes (OKT4, OKT8) and NK cells (Leu-11b) by antibody-dependent, complement-mediated cytotoxicity also did not affect the generation of suppressor factor. Depletion of B lymphocytes with OKB7 resulted in the generation of significantly less suppressor factor. Suppression produced by unstimulated purified B lymphocytes was approximately one-half that seen when B lymphocytes were stimulated with HAIgG. Differential membrane fractionation studies suggested that only HAIgG-stimulated B cell cultures contained peak activity in the 30,000 to 50,000 m.w. fraction. Supernatants from unstimulated purified T cells also generated suppression, which was approximately one-half of that seen with HAIgG-stimulated B cells, but no increase in suppressor activity was seen in T cell cultures after incubation with HAIgG. These studies demonstrate that HAIgG is capable of stimulating B lymphocytes to produce a lymphokine, suppressive B cell factor (SBF), which is capable of suppressing a polyclonal PFC response. SBF may be important in feedback control of human immunoglobulin production.  相似文献   

10.
To determine IL-2 requirement for activation of suppressor cells, PBMC were primed in one-way MLR in the presence of 10 micrograms/ml anti-IL-2R beta-chain antibody 2A3 (CD25) or control antibody, then irradiated and added as regulators in a fresh MLR. Cells primed in the presence of antibody 2A3 suppressed the proliferative response to fresh autologous lymphocytes to specific alloantigen but had no effect on the response to cells from third party donors. Priming in the presence of an antibody of irrelevant specificity induced only limited suppressor activity. Activated suppressor cells did not show cytolytic activity specific for the stimulators when tested at the time of the suppressor cell assay. To identify the subset(s) responsible for suppression, cells primed in the presence of antibody 2A3 were separated into CD4+/CD45RA+, CD4+/CD45RA-, and CD8+ subsets, which were irradiated and then tested. The suppressive activity was found predominantly in the CD4+/CD45RA+ subset, whereas CD8+ cells had some activity and CD4+/CD45RA- cells had none. No subset suppressed the response of autologous cells to third-party cells. When primed CD4+/CD45RA+ cells were cocultured with fresh autologous lymphocytes depleted of CD8+ cells, no suppression was observed, indicating that, although the CD4+/CD45RA+ cells can function as inducers of suppressors, they cannot function as suppressor-effectors. Conversely, CD8+ cells activated in MLR in the presence of 2A3 caused suppression, regardless of whether the fresh autologous responder population contained CD8+ cells. CD4+/CD45RA+ and CD8+ subsets isolated after priming in the presence of 2A3 also demonstrated Ag-specific suppression in the generation of cytotoxic T lymphocytes whereas CD4+/CD45RA- cells had no activity. Our data are consistent with the model that suppression of alloreactivity requires the cooperation of two types of cells, a CD4+/CD45RA+ suppressor-inducer and a CD8+ suppressor-effector population. Activated Tsi and fresh Tse or activated Tse alone can suppress lymphocyte proliferation and generation of CTL in response to specific Ag. Activation of Ag-specific T suppressor-inducer and T suppressor-effector cells appears to be relatively IL-2 independent and presumably require one or more other growth factors.  相似文献   

11.
Since purine nucleoside phosphorylase has been associated with suppressor function in lymphocytes, enzyme activities were studied in autologous rosette-forming cells, a subset showing suppressor properties. Levels of this enzyme were higher in these cells than in other T cells. Con A induction of autologous red cell receptors and suppressor activity of T cells were both inhibited in dose-dependent fashion by Formycin B, a well known inhibitor of purine nucleoside phosphorylase. Inhibition of autologous rosette-forming cells was obtained after pulse treatment of cells with Formycin B for as little as 1 hr, whereas cell proliferation was only inhibited when Formycin B was present throughout culture; this confirms the independence of cell proliferation, and development of red cell receptors and suppressor activity. This study indicates a crucial role for purine nucleoside phosphorylase enzyme in induction of T cell suppressor activity.  相似文献   

12.
T-Cell subsets identified by polyclonal and monoclonal antibodies to dipeptidyl peptidase IV (DP IV) were investigated. Analysis in a cytofluorograf revealed 63 +/- 7% positive scatter-gated T lymphocytes. DP IV-positive cells were found to be T11+, 74-81% OKT4+, and 12-19% OKT8+. DP IV-negative cells were T11+ and comprise 16-40% OKT8+, and 10-30% OKT4+ T cells. Treatment of T lymphocytes with rabbit anti-DP IV and complement as well as the presence of rabbit anti-DP IV during culture resulted in a reduction of interleukin 2 (IL-2) production. This reduction was not observed with the mouse monoclonal anti-DP IV antibody II-19-4-7. Positive enrichment of DP IV-positive lymphocytes by cell sorting revealed excellent IL-2 production of DP IV-positive cells and very poor IL-2 activity in supernatants obtained from DP IV-negative lymphocytes. Thus, DP IV may serve as cell surface marker for IL-2-producing T lymphocytes.  相似文献   

13.
Several soluble factors have recently been associated with the proliferation and differentiation of thymus-derived lymphocytes. One of these factors present in medium conditioned by T cell mitogen-stimulated lymphocytes has the ability to promote the long-term culture of normal and antigen-specific cytotoxic T cells. We report a method to test for this proliferative stimulus in the form of a sensitive microassay based upon the tritiated-thymidine incorporation of continuous murine tumor-specific cytotoxic T cell lines (CTLL). The microassay requires microliter quantitites of sample fluid and is amenable to quantitative analysis. This highly reproducible, quantitative assay for T cell growth factor (TCGF) has allowed investigation as to the kinetics of TCGF generation and has revealed that T lymphocytes are required for its production. Further investigation has supported the notion that this nonspecies-specific factor is actively removed from tissue culture medium by the proliferation of either T cell mitogen-activated lymphocytes or CTLL.  相似文献   

14.
Lymphocytes, derived from surgically resected lung carcinoid tissue, were stimulated in mixed culture with irradiated autologous tumor cells (MLTC). The autologous MLTC-stimulated lymphocytes were found to have killing activity against both autologous tumor cells and NK-sensitive target cells. The lymphoblasts generated during MLTC were isolated and cloned under limiting dilution conditions in the presence of interleukin 2. The cloned cell lines were analyzed for cell phenotype and tested for cytotoxic activity. Three cloned cell lines, out of 19 tested, were found to be cytotoxic either against NK-sensitive target cells (natural killers) or the autologous tumor cells. Two clones, having OKT8 phenotype, caused no lysis of the autologous tumor cells, though both exerted NK-like activity against K562 cells. Only one clone with OKT4 phenotype showed specific cytotoxic activity against the autologous tumor, but no NK-like activity against a panel of tumor target cells. These results suggest the coexistence of two types of antitumor cytotoxic lymphocytes at the tumor site: precursors of NK-like cells and specific cytotoxic T cells. Target cell specificity provided a means of distinguishing between the two types.  相似文献   

15.
Monoclonal anti-HLA-DR (anti-Ia) antibodies inhibited autologous mixed lymphocyte reactions (AMLR) when added from the initiation of the cultures, but not 72 hr later. The suppressive principle was removed by the stimulator non-T cells, but not by the responding T cells. Antibody-treated non-T cells lost their ability to activate T cells, whereas antibody-treated T cells could still respond to untreated non-T cells. The anti-DR antibodies prevented T cells from acquiring responsiveness to Interleukin-2 (IL-2). However, T cells previously activated by AMLR responded to IL-2 even in the presence of the anti-DR antibodies. OKT4+ lymphocytes synthesized IL-2 in the AMLR while OKT8+ cells did not. Anti-DR antibodies caused OKT4+ cells to become unresponsive to Interleukin-1 stimulation and inhibited the production of IL-2. Interleukin-1 (IL-1) promoted the synthesis of IL-2 in non-anti-DR-treated AMLR cultures. Since resting T cells are unresponsive to IL-2 and resting OKT4+ lymphocytes are unable to produce IL-2 even in the presence of IL-1, it is concluded that HLA-DR antigens render resting T cells sensitive to IL-2 and enable OKT4+ lymphocytes to respond to IL-1 and subsequently, to produce Interleukin-2.  相似文献   

16.
The effect of transforming growth factor-beta 1 (TGF-beta) on activation-induced CD8+ T cell cytotoxicity and gene expression was investigated. TGF-beta was demonstrated to inhibit pore-forming protein (PFP) mRNA expression and total benzoyloxycarbonyl-L-lysine thiobenzyl ester esterase activity in CD8+ T cells cultured with IL-2 and OKT3 mAb for 6 to 18 days. Consistently, in the absence or presence of TGF-beta, the PFP mRNA expression and lymphokine-activated killer (LAK) activity of CD8+ T cells were closely correlated. The inhibitory effects of TGF-beta on both CD8+ T cell PFP mRNA expression and LAK activity were reversible by removal of TGF-beta from the culture. Expression of lymphokines, adhesion/recognition molecules, and activated p55 IL-2R, previously implicated in the lytic mechanism of cytotoxic lymphocytes, either was not detectable or did not correlate with TGF-beta inhibition of LAK activity. In addition, independently of effector/target cell binding, the lectin- or heteroconjugated antibody-dependent cellular cytotoxicity of IL-2/OKT3 mAb-activated CD8+ T cells was inhibited by preculture with TGF-beta. TGF-beta also inhibited the rapid activation-induced expression of PFP mRNA and cytotoxic potential in resting T cells, thereby indicating that the effect of TGF-beta was independent of T cell proliferation. TGF-beta inhibition of CD8+ T cell PFP mRNA expression and cytotoxic potential was TGF-beta dose dependent; however, a variety of activation stimuli (including IL-2, IL-6, and OKT3 mAb) were all similarly inhibited by TGF-beta. Therefore, TGF-beta may be an important general regulator of CD8+ T cell cytotoxic function, in particular by suppressing expression of PFP, a major cytolytic protein implicated in the lytic function of cytotoxic lymphocytes.  相似文献   

17.
Human peripheral blood lymphocytes treated for 24 to 48 hr with optimally mitogenic doses of concanavalin A suppressed the proliferative response of autologous T cells to mitogens and antigens. Con A-treated cells also suppressed the proliferative response and the immunoglobulin synthetic response of autologous B cells stimulated in vitro by T cell helper factor. The human Con A suppressor cell was sensitive to treatment with mitomycin C and to exposure to radiation doses exceeding 1000 rads. The Con A suppressor cell was shown to reside in the nylon wool-nonadherent, sheep red cell rosette-forming, histamine receptor-bearing population of lymphocytes and to lack surface DRW antigens. One mechanism of action of Con A suppressor cells was shown to be the inactivation of nonspecific T cell helper factor.  相似文献   

18.
Anti-HLA-DR antibodies did not inhibit concanavalin A-(Con A) induced T cell proliferation or the generation of suppressor cells capable of inhibiting immunoglobulin synthesis in autologous mononuclear cells after pokeweed mitogen stimulation. Nylon-wool purified T cells (pretreated with anti-HLA-DR antibody and C) exposed to Con A acquired responsiveness to interleukin 2 (IL 2) and were able to absorb this growth factor, whereas nonlectin-treated cells did not respond to IL 2 and could not absorb it. In the presence of interleukin 1 (IL 1), Con A stimulated the synthesis of IL 2 in purified OKT4+ lymphocytes but not OKT8+ cells. However, in the absence of IL 1, neither resting OKT4+ nor Con A-treated OKT4+ cells produced IL 2. Con A by itself did not directly stimulate macrophages to synthesize IL 1, although it could do so in the presence of OKT4+ but not OKT8+ lymphocytes. In addition, Con A induced proliferation of purified T cells provided IL 1 was supplied to the cultures. Cyclosporin A rendered Con A-treated T cells unresponsive to IL 2, made lectin-stimulated OKT4+ lymphocytes unable to respond to IL 1, and inhibited the synthesis of IL 2. Furthermore, this drug abrogated the Con A-stimulated synthesis of IL 1 by acting on OKT4+ lymphocytes and not on macrophages. Finally, cyclosporin-A suppressed the proliferative response and the generation of suppressor T cells induced by Con A. The following are concluded: 1) HLA-DR antigens do not seem to play any role in the triggering of T cells by Con A, and macrophages participate in lectin-induced activation of T cells mainly by providing IL 1. 2) Cyclosporin-A inhibits activation of T cells by interfering with the mechanism by which Con A stimulates T lymphocytes. 3) Con A triggers T lymphocytes by directly interacting with their receptors for activation.  相似文献   

19.
Human lymphocytes, stimulated in vitro for 6 days with x-irradiated or glutaraldehyde-treated autologous Epstein-Barr (EB) virus-transformed lymphoblastoid cell lines (LCL), are cytotoxic for autologous and allogeneic EB+ LCLs as well as for several EB- cell lines that are also susceptible to lysis by interferon-activated natural killer (NK) cells. To determine whether the apparent nonspecific lysis mediated by LCL-stimulated cells is due to a mixture of effector cells directed against different target cells, advantage was taken of our recent finding that monoclonal antibody OKT8 reacts with human cytotoxic T lymphocytes but not with NK cells or NK-like cells generated in mixed leukocyte cultures. The depletion of OKT8+ cells from LCL-stimulated cultures by treatment with OKT8 and complement abolished or markedly depleted cytotoxicity against all EB+ target cells tested, whereas cytotoxicity against EB-, NK-sensitive cell lines including K562, MOLT-4 and HSB-2 was not or only minimally reduced. These results indicate that stimulation with autologous LCL results in the generation of OKT8+ cytotoxic T lymphocytes that lyse EB virus-transformed LCL and OKT8- NK-like cells that lyse EB-, NK-sensitive cells.  相似文献   

20.
In vivo exposure of human epidermis to UV abrogates the function of T6+DR+ Langerhans cells and induces the appearance of Ag-presenting T6-DR+ OKM5+ cells in the epidermis. Since UV exposure of murine skin results in Ts lymphocyte activation, we investigated the capacity of human epidermal cells (EC) harvested 3 days after in vivo UV exposure to activate regulatory and effector autologous T lymphocyte subsets. T lymphocytes were separated into CD8+ suppressor/cytotoxic lymphocytes and CD4+ helper/inducer lymphocytes by C lysis and panning. The CD4+ subset was further divided by using the 2H4 mAB to obtain CD4+2H4+ lymphocytes (inducers of TS lymphocytes) and CD4+2H4- lymphocytes (inducers of B cell Ig production and inducers of cytotoxic T cells). Unirradiated suction blister-derived EC from control skin (C-EC) and from skin exposed in vivo to UV (UV-EC) were cultured with purified autologous T lymphocyte subsets in the absence of added Ag. The resultant T lymphocyte proliferation was detected by [3H]thymidine uptake. UV-EC were highly effective in the stimulation of CD4+ lymphocytes, whereas C-EC were poor stimulators. The stimulator effect of UV-EC was abrogated after depletion of DR+ UV-EC. When CD4+ lymphocytes were fractionated, UV-EC consistently demonstrated enhanced ability to stimulate suppressor-inducer CD4+2H4+ lymphocytes relative to C-EC. Although less responsive than CD4+2H4+ lymphocytes, CD4+2H4- lymphocytes also demonstrated greater proliferation to UV-EC than to C-EC. Neither UV-EC nor C-EC were able to activate CD8+ lymphocytes devoid of CD4+ lymphocytes. However, after addition of rIL-2 at concentrations that allow binding only to the high affinity IL-2R on T lymphocytes, UV-EC induced vigorous proliferation of CD8+ lymphocytes, whereas C-EC induced only background levels of proliferation. C lysis of leukocytes resident within UV-EC resulted in 66 to 70% reduction of CD8+ lymphocyte proliferation. In conclusion, UV-EC may activate CD8+ lymphocytes by at least two pathways: (1) UV-EC activation of CD4+2H4+ lymphocytes may induce differentiation/proliferation of CD8+ suppressor cells and (2) UV-EC activation of CD4+ cells may induce IL-2 production, that, in combination with UV-induced epidermal leukocytes, stimulates CD8+ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号