首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
Helicoverpa armigera (Hübner) is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR) for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK) population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male) and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male) suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (DLC) was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton.  相似文献   

2.
Toxicities of 10 insecticides were examined against late third instars of Culex pipiens pallens, the northern house mosquito, using a direct-contact mortality bioassay. Several strains of mosquitoes were tested (insecticide-susceptible KS-CP strain and five geospatially distant field-collected strains (DG-CP, US-CP, BS-CP, GS-CP, and SG-CP)) and identified by polymerase chain reaction. Marked regional variations of insecticide susceptibility were observed. Extremely high to low levels of resistance were measured: bifenthrin, resistance ratio (RR) = 1-521; β-cyfluthrin, RR = 16-397; α-cypermethrin, RR = 9-343; deltamethrin, RR = 1-40; etofenprox, RR = 2-42; permethrin, RR = 3-46; chlorpyrifos, RR = 2-675; fenitrothion, RR = 0.5-364; and fenthion, RR = 2-360. All strains were susceptible to one or more of the insecticides examined. These results indicate that careful selection and rotational use of these insecticides may result in continued satisfactory control against field populations of northern house mosquitoes.  相似文献   

3.
4.
Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles–Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions.  相似文献   

5.
Bacillus thuringiensis subsp. israelensis (Bti) is increasingly used worldwide for mosquito control and is the only larvicide used in the French Rhône-Alpes region since decades. The artificial selection of mosquitoes with field-persistent Bti collected in breeding sites from this region led to a moderate level of resistance to Bti, but to relatively high levels of resistance to individual Bti Cry toxins. Based on this observation, we developed a bioassay procedure using each Bti Cry toxin separately to detect cryptic Bti-resistance evolving in field mosquito populations. Although no resistance to Bti was detected in none of the three mosquito species tested (Aedes rusticus, Aedes sticticus and Aedes vexans), an increased tolerance to Cry4Aa (3.5-fold) and Cry11Aa toxins (8-fold) was found in one Ae. sticticus population compared to other populations of the same species, suggesting that resistance to Bti may be arising in this population. This study confirms previous works showing a lack of Bti resistance in field mosquito populations treated for decades with this bioinsecticide. It also provides a first panorama of their susceptibility status to individual Bti Cry toxins. In combination with bioassays with Bti, bioassays with separate Cry toxins allow a more sensitive monitoring of Bti-resistance in the field.  相似文献   

6.
A residual contact vial plus water (RCVpW) bioassay method, in which water was supplemented to minimize control mortality, was established to monitor insecticide resistance in field populations of the melon thrips, Thrips palmi. In the RCVpW, median lethal doses (LD50) of six insecticides commonly used in T. palmi control, were determined at 8 h post-treatment, using a susceptible RDA strain according to the RCVpW protocol. Diagnostic doses for on-site resistance monitoring of the six insecticides, which were determined as doses two-fold higher than required to achieve LD90 in the RDA strain, were in the range of 0.299 to 164.3 μg?1 cm2. Insecticide resistance levels in five field populations of T. palmi were evaluated to test the applicability of RCVpW in monitoring the pest. Although the RDA strain exhibited 100% mortality to diagnostic doses, field populations showed a reduced mortality in response to all test insecticides, indicating different degrees of resistance. In particular, all test field populations exhibited a significantly low mortality in response to spinosad, suggesting a wide distribution of spinosad resistance. Synergistic bioassay revealed that cytochrome P450-mediated metabolic factor is involved in spinosad resistance in the Korean population. Interestingly, an apparently reduced mortality to emamectin benzoate and chlofenapyr was observed in some field populations, perhaps suggesting uneven distribution of resistance to these insecticides in field populations. Our study showed that the RCVpW protocol can be employed both as an on-site resistance monitoring method for major thrip species, and in the selection of appropriate insecticides for their control.  相似文献   

7.
Methods were developed for screening Prunus selections for host suitability to Criconemella xenoplax. The relative host suitability of selections was based upon a doubling accumulation value (β) that was defined as the number of degree-days (base 9 C) required for doubling of an increment of the initial nematode population. The β value characteristic for C. xenoplax (139 ± 8 degree-days) on suitable hosts was similar to the average β value determined for several peach rootstocks known to be suitable hosts. The β values were 144 ± 21 for Halford, 141 ± 16 for Lovell, and 138 ± 10 for Nemaguard. A higher value for β could indicate poorer host suitability or resistance of a selection to C. xenoplax. All of 369 Prunus accessions tested, including eight accessions that had survived well on a field site infested with C. xenoplax, were suitable hosts. Apparently, resistance to C. xenoplax was not a factor in survival of the accessions planted in the field. Seedlings from P. besseyi, P. pumila ''Mando'', and two interspecific hybrids, Redcoat and Sapalta IR 549-1, failed to support nematode population increase in 44-81% of tests conducted, but all selections supported population increase in some tests. These accessions may have resistance mechanisms that are active only under specific conditions.  相似文献   

8.
A Pratylenchus neglectus population from lltah (UT3) was more virulent to Lahontan alfalfa than other P. neglectus populations from Utah (UT1, UT2) and Wyoming (WY). All alfalfa plants survived at 24 ± 3 C when inoculated with WY, UT1, or UT2 at initial populations (Pi) of 500, 1,000, and 5,000 nematodes per plant. At Pi 10,000 with WY, UT1, or UT2, plant mortality was 15, 15, and 20%, respectively; at Pi 5,000 and 10,000 with UT3, plant mortality was 10 and 40%. The WY, UT1, and UT2 populations reduced (P ≤ 0.05) root growth at Pi 10,000 only, and UT3 reduced (P ≤ 0.05) root growth at Pi 1,000, 5,000, and 10,000. At Pi 5,000, shoot dry weights were reduced by 10-23% by WY, 14-29% by UT1, 12-25% by UT2, and 20-48% by UT3 at 15-30 C. The UT3 population reduced (P ≤ 0.05) root dry weight at 20-30 C at Pi 1,000 and 5,000. The WY, UT1, and UT-2 populations did not reduce (P ≥ 0.05) root growth at any temperature or Pi. The UT3 nematode reproductive indices were greater than those of the other nematode populations at all Pi and increased with temperature.  相似文献   

9.
Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed.  相似文献   

10.
Blood samples from camels, sheep, goats and cattle from six Regions in Saudi Arabia were examined for blood parasites. Asir Region camels were disinfected while those of the Eastern, Jazan, Northern Frontiers, Riyadh and Tabouk Regions were infected with Trypanosoma evansi (5–40%), those of Riyadh and the Eastern Regions were infected with Dipetalonema evansi (1–6%) and those of the Eastern, Jazan and Riyadh Regions were infected with Eperythrozoon species (8–20%). Sheep and goats of all tested regions were infected with Theilaria hirci (4–20% and 6–14%, respectively), Theilaria ovis (5–19% and 6–24%, respectively) and Eperthrozoon ovis (2–9% and 2–8%, respectively). Sheep of the Eastern and Northern Frontiers Regions were also infected with Anaplasma ovis (2%) and also those of the Eastern Region were infected with Babesia motasi (4%) as well. Cattle of Asir and Eastern Regions were infected with Anaplasma marginale (1–3.4%) and those of the Eastern, Jazan and Riyadh Regions were infected with Theileria annulata (11.3–25%) and Eperthrozoon wenyoni (1–4%). Moreover, Jazan cattle were infected with Babesia bigemina (6%) and a benign Theileria species (27%). Some of these parasites are recorded in new localities indicating that they are spreading in the country. Also, this is the first report in Saudi Arabia of D. evansi in camels, A. ovis and B. motasi in sheep and A. marginale and B. bigemina in cattle. These parasites may be introduced into the country with infected livestock infested with the vectors of these parasites. The suspected vectors of the detected parasites in Saudi Arabia is discussed. Follow up surveys of blood parasites are recommended to assess their distribution and infection rates in the livestock of all Regions of Saudi Arabia, to make plans for control measures against their vectors.  相似文献   

11.
Monoxenic cultures of burrowing nematode populations extracted from banana roots from Belize, Guatemala, Honduras, and Costa Rica were established on carrot discs. Cultures of Radopholus spp. were also obtained from Florida, Puerto Rico, Dominican Republic, and Ivory Coast. The aggressiveness (defined as reproductive fitness and root necrosis) of these populations was evaluated by inoculating banana plants (Musa AAA, cv. Grande Naine) with 200 nematodes/plant. Banana plants produced by tissue culture were grown in 0.4-liter styrofoam cups, containing a 1:1 mix of a coarse and a fine sand, at ca. 27 °C and 80% RH. Banana plants were acclimated and allowed to grow for 4 weeks prior to inoculation. Plant height, fresh shoot and root weights, root necrosis, and nematode population densities were determined 8 weeks after inoculation. Burrowing-nematode populations varied in aggressiveness, and their reproductive fitness was generally related to damage reported in the field. Plant height and fresh shoot and root weight did not reflect damage caused by nematodes under our experimental conditions. Necrosis of primary roots was closely related to the reproductive fitness of the nematode populations. Variation in aggressiveness among nematode populations followed a similar trend in the two susceptible hosts tested, Grande Naine and Pisang mas. All nematode populations had a low reproductive factor (Rf ≤2.5) in the resistant host except for the Ivory Coast population which had a moderate reproductive factor (Rf ≤ 5) on Pisang Jari Buaya. This is the first report of a burrowing nematode population parasitizing this important source of resistance to R. similis.  相似文献   

12.
Blueberry replant disease (BRD) is an emerging threat to continued blueberry (Vaccinium spp.) production in Georgia and North Carolina. Since high populations of ring nematode Mesocriconema ornatum were found to be associated with commercially grown blueberries in Georgia, we hypothesized that M. ornatum may be responsible for predisposing blueberry to BRD. We therefore tested the pathogenicity of M. ornatum on 10-wk-old Rabbiteye blueberries (Vaccinium virgatum) by inoculating with initial populations (Pi) of 0 (water control), 10, 100, 1,000. and 10,000 mixed stages of M. ornatum/pot under both greenhouse (25 ± 2°C) and field microplot conditions. Nematode soil population densities and reproduction rates were assessed 75, 150, 225, and 255, and 75, 150, 225, and 375 d after inoculation (DAI) in both the greenhouse and field experiments, respectively. Plant growth parameters were recorded in the greenhouse and field microplot experiments at 255 and 375 DAI, respectively. The highest M. ornatum population density occurred with the highest Pi level, at 75 and 150 DAI under both greenhouse (P < 0.01) and field (P < 0.01) conditions. However, M. ornatum rate of reproduction increased significantly in pots receiving the lowest Pi level of 10 nematodes/plant compared with the pots receiving Pi levels of 100, 1,000, and 10,000 nematodes 75 DAI. Plant-parasitic nematode populations were determined in commercial blueberry replant sites in Georgia and North Carolina during the 2010 growing season. Mesocriconema ornatum and Dolichodorus spp. were the predominant plant-parasitic nematodes in Georgia and North Carolina, respectively, with M. ornatum occurring in nearly half the blueberry fields sampled in Georgia. Other nematode genera detected in both states included Tylenchorhynchus spp., Hoplolaimus spp., Hemicycliophora spp., and Xiphinema spp. Paratrichodorus spp. was also found only in Georgia. In Georgia, our results indicate that blueberry is a host for M. ornatum and its relationship to BRD warrants further investigation.  相似文献   

13.
The toxicity of some of the most commonly used insecticides in the organophosphate and pyrethroid classes were investigated against different Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) populations collected over three consecutive years (2005-2007). The populations were tested using leaf dip bioassays for residual effects and topical applications to measure the response of larvae that would come into direct contact with field application of insecticides. In leaf dip assays, the LC50 (micrograms per milliliter; 120 h) values for chlorpyrifos and profenofos were in the range of 59.3-1,023 and 180.02-1,118 respectively. The LC50 values for lambda-cyhalthrin, alphamethrin, and deltamethrin were 359.08-2,677, 112.9-923.5, and 47.81-407.03, respectively. The toxicity for the above insecticides in topical application was similar to toxicity in leaf dip assays. The susceptibility of a laboratory population, which was locally developed and designated as (Lab-PK), to deltamethrin was comparable with another susceptible laboratory population. Resistance ratios for five field populations were generally low to medium for deltamethrin, but high to very high for chlorpyrifos, profenofos, lambda-cyhalthrin and alphamethrin compared with the Lab-PK population. Our data also suggested that the five field populations had multiple resistance to two classes of insecticides. The populations showed resistance to two organophosphates tested and to lambda-cyhalthrin and alphamethrin; however, resistance to deltamethrin was only found at two locations. This pattern indicates occurrence of two divergent patterns of resistance within pyrethroids. The resistance to the insecticides was stable across 3 yr, suggesting field selection for general fitness had also taken place in various populations of C. carnea. The broad spectrum of resistance and stability of resistance to insecticides in C. carnea in the current study suggested that it could be a prime candidate for mass releases and compatible with most spray programs.  相似文献   

14.
Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site—the voltage-gated sodium channel (VGSC)—and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.  相似文献   

15.
An unusual population of Meloidogyne hapla, earlier thought to be an undescribed species, was found causing large galls, without adventitious roots, and substantial damage to coffee in Maui, Hawaii. Only in Brazil had similar damage to coffee been reported by this species. Unlike M. exigua from South and Central America, this population reproduced well on coffee cv. Mokka and M. incognita-susceptible tomato but poorly on tomato with the Mi resistance gene. Characterization included SEM images, esterase isozymes, and five DNA sequences: i) the D3 segment of the large subunit (LSU-D3 or 28S) rDNA, ii) internal transcribed spacer (ITS-1) rDNA, iii) intergenic spacer (IGS) rDNA, iv) the mitochondrial interval from cytochrome oxidase (CO II) to 16S mtDNA, and v) the nuclear gene Hsp90. Sequences for ITS-1, IGS, and COII were similar to other M. hapla populations, but within species ITS-1 variability was not less than among species. One LSU-D3 haplotype was similar to a previously analyzed population with two minor haplotypes. Hsp90 exhibited some variation between Maryland and Hawaiian populations distinct from other species. Females were narrow with wide vulval slits, large interphasmidial distances, and more posterior excretory pores; 20% of perineal patterns had atypical perivulval lines. Males had a low b ratio (<12 µm). Juveniles had a short distance between stylet and dorsal gland orifice. Juvenile body length was short (<355 µm) and was different between summer and winter populations.  相似文献   

16.
Pyrethroid insecticides have been used to control larvae or adults of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, a key pest of field corn in the United States. In response to reports of reduced efficacy of pyrethroids in WCR management programs in southwestern areas of Nebraska and Kansas the present research was designed to establish a baseline of susceptibility to the pyrethroid insecticide, bifenthrin, using susceptible laboratory populations and to compare this baseline with susceptibility of field populations. Concentration-response bioassays were performed to estimate the baseline susceptibility. From the baseline data, a diagnostic concentration (LC99) was determined and used to test adults of both laboratory and field populations. Larval susceptibility was also tested using both laboratory and field populations. Significant differences were recorded in adult and larval susceptibility among WCR field and laboratory populations. The highest LC50 for WCR adults was observed in populations from Keith 2 and Chase Counties, NE, with LC50s of 2.2 and 1.38 μg/vial, respectively, and Finney County 1, KS, with 1.43 μg/vial, as compared to a laboratory non-diapause population (0.24 μg/vial). For larvae, significant differences between WCR field and laboratory populations were also recorded. Significant differences in mortalities at the diagnostic bifenthrin concentration (LC99) were observed among WCR adult populations with western Corn Belt populations exhibiting lower susceptibility to bifenthrin, especially in southwestern Nebraska and southwestern Kansas. This study provides evidence that resistance to bifenthrin is evolving in field populations that have been exposed for multiple years to pyrethroid insecticides. Implications to sustainable rootworm management are discussed.  相似文献   

17.
Culex quinquefasciatus is one of the most important mosquito vectors of arboviruses. Currently, the fastest approach to control disease transmission is the application of synthetic adulticide insecticides. However, in highly populated urban centers the development of insecticide resistance in mosquito populations could impair insecticide efficacy and therefore, disease control. To assess the effect of resistance on vector control, females of Cx. quinquefasciatus collected from six mosquito control operational areas in Harris County, Texas, were treated in field cage tests at three different distances with the pyrethroid Permanone® 31–66 applied at the operational rate. Females were analyzed by sequencing and/or diagnostic PCR using de novo designed primers for detecting the kdr-like mutation in the voltage-gated sodium channel (L982F; TTA to TTT) (house fly kdr canonical mutation L1014F). Females from the Cx. quinquefasciatus susceptible Sebring strain and those from the six operational areas placed at 30.4 m from the treatment source were killed in the tests, while 14% of field-collected mosquitoes survived at 60.8 m, and 35% at 91.2 m from the source. The diagnostic PCR had a with 97.5% accuracy to detect the kdr-like mutation. Pyrethroid resistant mosquitoes carrying the L982F mutation were broadly distributed in Harris County at high frequency. Among mosquitoes analyzed (n = 1,028), the kdr-kdr genotype was prevalent (81.2%), the kdr-s genotype was 18%, and s-s mosquitoes were less than 1% (n = 8). A logistic regression model estimated an equal probability of survival for the genotypes kdr-kdr and kdr-s in all areas analyzed. Altogether, our results point to a high-risk situation for the pyrethroid-based arboviral disease control in Harris County.  相似文献   

18.
Ten populations of Xiphinema americanum-group nematodes were reared from individual females to evaluate inter- and intraspecific variation under identical host and environmental conditions. Data indicated that morphometric variability of X. americanum was the result of genetic variation rather than phenotypic plasticity and that genetic heterogeneity was greater than previously thought. Morphometrics of single female derived (SFD) populations identified different genotypes present in the field populations. Stylet length was the least variable morphometric character of SFD populations, but collectively stylet measurements of all individuals formed an uninterrupted continuum ranging from 107-148 μm. Range and frequency of stylet measurements of field populations could be accounted for by the relative proportion of different genotypes in the population. Nine SFD populations were identified as X. americanum sensu stricto, and one SFD population was similar to X. californicum.  相似文献   

19.
Aedes aegypti is the main epidemic vector of arboviruses in Africa. In Senegal, control activities are mainly limited to mitigation of epidemics, with limited information available for Ae. aegypti populations. A better understanding of the current Ae. aegypti susceptibility status to various insecticides and relevant resistance mechanisms involved is needed for the implementation of effective vector control strategies. The present study focuses on the detection of insecticide resistance and reveals the related mechanisms in Ae. aegypti populations from Senegal.Bioassays were performed on Ae. aegypti adults from nine Senegalese localities (Matam, Louga, Barkedji, Ziguinchor, Mbour, Fatick, Dakar, Kédougou and Touba). Mosquitoes were exposed to four classes of insecticides using the standard WHO protocols. Resistance mechanisms were investigated by genotyping for pyrethroid target site resistance mutations (V1016G, V1016I, F1534C and S989P) and measuring gene expression levels of key detoxification genes (CYP6BB2, CYP9J26, CYP9J28, CYP9J32, CYP9M6, CCEae3a and GSTD4).All collected populations were resistant to DDT and carbamates except for the ones in Matam (Northern region). Resistance to permethrin was uniformly detected in mosquitoes from all areas. Except for Barkédji and Touba, all populations were characterized by a susceptibility to 0.75% Permethrin. Susceptibility to type II pyrethroids was detected only in the Southern regions (Kédougou and Ziguinchor). All mosquito populations were susceptible to 5% Malathion, but only Kédougou and Matam mosquitoes were susceptible to 0.8% Malathion. All populations were resistant to 0.05% Pirimiphos-methyl, whereas those from Louga, Mbour and Barkédji, also exhibited resistance to 1% Fenitrothion. None of the known target site pyrethroid resistance mutations was present in the mosquito samples included in the genotyping analysis (performed in > 1500 samples). In contrast, a remarkably high (20-70-fold) overexpression of major detoxification genes was observed, suggesting that insecticide resistance is mostly mediated through metabolic mechanisms. These data provide important evidence to support dengue vector control in Senegal.  相似文献   

20.

Background and Aims

Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug, Arion subfuscus, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages.

Methods

Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), ‘selected’ and undamaged ‘control’ trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years.

Key Results

The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (Melampsora epitea), a native herbivorous beetle (Chrysomela knabi) and an exotic willow leaf beetle (Plagiodera versicolora).

Conclusions

This exotic slug changed the population structure of F2 hybrid willows in unanticipated ways. Defence expression remained unchanged, while nutritional and growth traits changed. These changes caused plants to be more susceptible to other plant enemies. Other exotic herbivore species are anticipated to have similar direct and indirect effects on native plant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号