首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
The nutritional symbiosis between aphids and their obligate symbiont, Buchnera aphidicola, is often characterized as a highly functional partnership in which the symbiont provides the host with essential nutrients. Despite this, some aphid lineages exhibit dietary requirements for nutrients typically synthesized by Buchnera, suggesting that some aspect of the symbiosis is disrupted. To examine this phenomenon in the pea aphid, Acyrthosiphon pisum, populations were assayed using defined artificial diet to determine dietary requirements for essential amino acids (EAAs). Six clones exhibiting dependence on EAAs in their diet were investigated further. In one aphid clone, a mutation in a Buchnera amino acid biosynthesis gene could account for the clone''s requirement for dietary arginine. Analysis of aphid F1 hybrids allowed separation of effects of the host and symbiont genomes, and revealed that both affect the requirement for dietary EAAs in the clones tested. Amino acid requirements were minimally affected by secondary symbiont infection. Our results indicate that variation among pea aphids in dependence on dietary amino acids can result from Buchnera mutation as well as variation in the host genotype.  相似文献   

2.
Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.  相似文献   

3.
Various animals derive nutrients from symbiotic microorganisms with much-reduced genomes, but it is unknown whether, and how, the supply of these nutrients is regulated. Here, we demonstrate that the production of essential amino acids (EAAs) by the bacterium Buchnera aphidicola in the pea aphid Acyrthosiphon pisum is elevated when aphids are reared on diets from which that EAA are omitted, demonstrating that Buchnera scale EAA production to host demand. Quantitative proteomics of bacteriocytes (host cells bearing Buchnera) revealed that these metabolic changes are not accompanied by significant change in Buchnera or host proteins, suggesting that EAA production is regulated post-translationally. Bacteriocytes in aphids reared on diet lacking the EAA methionine had elevated concentrations of both methionine and the precursor cystathionine, indicating that methionine production is promoted by precursor supply and is not subject to feedback inhibition by methionine. Furthermore, methionine production by isolated Buchnera increased with increasing cystathionine concentration. We propose that Buchnera metabolism is poised for EAA production at certain maximal rates, and the realized release rate is determined by precursor supply from the host. The incidence of host regulation of symbiont nutritional function via supply of key nutritional inputs in other symbioses remains to be investigated.  相似文献   

4.
5.
《Journal of Asia》2014,17(3):537-541
The function of the pea aphid's primary symbiont, Buchnera aphidicola, has been well studied. However, the factors affecting the dynamics of Buchnera density are seldom studied simultaneously. A better understanding of these factors could provide insights into its symbiosis with aphids. This study evaluated the effects of host life stage and rearing temperature on Buchnera density. We measured Buchnera density in seven life stages of pea aphids (Acyrthosiphon pisum) reared at six constant temperatures. Both host life stage and temperature significantly affected Buchnera density, which tended to decrease as aphid age and rearing temperature increased.  相似文献   

6.

Background

Genome evolution in intracellular microbial symbionts is characterized by gene loss, generating some of the smallest and most gene-poor genomes known. As a result of gene loss these genomes commonly contain metabolic pathways that are fragmented relative to their free-living relatives. The evolutionary retention of fragmented metabolic pathways in the gene-poor genomes of endosymbionts suggests that they are functional. However, it is not always clear how they maintain functionality. To date, the fragmented metabolic pathways of endosymbionts have been shown to maintain functionality through complementation by host genes, complementation by genes of another endosymbiont and complementation by genes in host genomes that have been horizontally acquired from a microbial source that is not the endosymbiont. Here, we demonstrate a fourth mechanism.

Results

We investigate the evolutionary retention of a fragmented pathway for the essential nutrient pantothenate (vitamin B5) in the pea aphid, Acyrthosiphon pisum endosymbiosis with Buchnera aphidicola. Using quantitative analysis of gene expression we present evidence for complementation of the Buchnera pantothenate biosynthesis pathway by host genes. Further, using complementation assays in an Escherichia coli mutant we demonstrate functional replacement of a pantothenate biosynthesis enzyme, 2-dehydropantoate 2-reductase (E.C. 1.1.1.169), by an endosymbiont gene, ilvC, encoding a substrate ambiguous enzyme.

Conclusions

Earlier studies have speculated that missing enzyme steps in fragmented endosymbiont metabolic pathways are completed by adaptable endosymbiont enzymes from other pathways. Here, we experimentally demonstrate completion of a fragmented endosymbiont vitamin biosynthesis pathway by recruitment of a substrate ambiguous enzyme from another pathway. In addition, this work extends host/symbiont metabolic collaboration in the aphid/Buchnera symbiosis from amino acid metabolism to include vitamin biosynthesis.
  相似文献   

7.
The symbiotic bacterium Buchnera aphidicola lacks key genes in the biosynthesis of five essential amino acids (EAAs), and yet its animal hosts (aphids) depend on the symbiosis for the synthesis of these EAAs (isoleucine, leucine, methionine, phenylalanine, and valine). We tested the hypothesis, derived from genome annotation, that the missing Buchnera reactions are mediated by host enzymes, with the exchange of metabolic intermediates between the partners. The specialized host cells bearing Buchnera were separated into a Buchnera fraction and a Buchnera-free host cell fraction (HF). Addition of HF to isolated Buchnera preparations significantly increased the production of leucine and phenylalanine, and recombinant enzymes mediating the final reactions in branched-chain amino acid and phenylalanine synthesis rescued the production of these EAAs by Buchnera preparations without HF. The likely precursors for the missing proximal reactions in isoleucine and methionine synthesis were identified, and they differed from predictions based on genome annotations: synthesis of 2-oxobutanoate, the aphid-derived precursor of isoleucine synthesis, was stimulated by homoserine and not threonine via threonine dehydratase, and production of the homocysteine precursor of methionine was driven by cystathionine, not cysteine, via reversal of the transsulfuration pathway. The evolution of shared metabolic pathways in this symbiosis can be attributed to host compensation for genomic deterioration in the symbiont, involving changes in host gene expression networks to recruit specific enzymes to the host cell.  相似文献   

8.
Amoebae serve as hosts for various intracellular bacteria, including human pathogens. These microbes are able to overcome amoebal defense mechanisms and successfully establish a niche for replication, which is usually the cytoplasm. Here, we report on the discovery of a bacterial symbiont that is located inside the nucleus of its Hartmannella sp. host. This symbiont, tentatively named ‘Candidatus Nucleicultrix amoebiphila'', is only moderately related to known bacteria (∼90% 16S and 23S rRNA sequence similarity) and member of a novel clade of protist symbionts affiliated with the Rickettsiales and Rhodospirillales. Screening of 16S rRNA amplicon data sets revealed a broad distribution of these bacteria in freshwater and soil habitats. ‘Candidatus Nucleicultrix amoebiphila'' traffics within 6 h post infection to the host nucleus. Maximum infection levels are reached after 96–120 h, at which time point the nucleus is pronouncedly enlarged and filled with bacteria. Transmission of the symbionts occurs vertically upon host cell division but may also occur horizontally through host cell lysis. Although we observed no impact on the fitness of the original Hartmannella sp. host, the bacteria are rather lytic for Acanthamoeba castellanii. Intranuclear symbiosis is an exceptional phenomenon, and amoebae represent an ideal model system to further investigate evolution and underlying molecular mechanisms of these unique microbial associations.  相似文献   

9.
Defences against parasites are typically associated with costs to the host that contribute to the maintenance of variation in resistance. This also applies to the defence provided by the facultative bacterial endosymbiont Hamiltonella defensa, which protects its aphid hosts against parasitoid wasps while imposing life-history costs. To investigate the cost–benefit relationship within protected hosts, we introduced multiple isolates of H. defensa to the same genetic backgrounds of black bean aphids, Aphis fabae, and we quantified the protection against their parasitoid Lysiphlebus fabarum as well as the costs to the host (reduced lifespan and reproduction) in the absence of parasitoids. Surprisingly, we observed the opposite of a trade-off. Strongly protective isolates of H. defensa reduced lifespan and lifetime reproduction of unparasitized aphids to a lesser extent than weakly protective isolates. This finding has important implications for the evolution of defensive symbiosis and highlights the need for a better understanding of how strain variation in protective symbionts is maintained.  相似文献   

10.
Aphids harbor primary endosymbionts, Buchnera aphidicola, in specialized cells within their body cavities. Aphids and Buchnera have strict mutualistic relationships in nutrition exchange. This ancient association has received much attention from researchers who are interested in endosymbiotic evolution. Previous studies have found parallel phylogenetic relationships between non‐galling aphids and Buchnera at lower taxonomic levels (genus, species). To understand whether relatively isolated habitats such as galls have effect on the parallel relationships between aphids and Buchnera, the present paper investigated the phylogenetic relationships of gall aphids from Pemphigus and allied genera, which induce pseudo‐galls or galls on Populus spp. (poplar) and Buchnera. The molecular phylogenies inferred from three aphid genes (COI, COII and EF‐1α) and two Buchnera genes (gnd, 16S rRNA gene) indicated significant congruence between aphids and Buchnera at generic as well as interspecific levels. Interestingly, both aphid and Buchnera phylogenies supported three main clades corresponding to the galling locations of aphids, namely leaf, the joint of leaf blade and petiole, and branch of the host plant. The results suggest phylogenetic conservatism of gall characters, which indicates gall characters are more strongly affected by aphid phylogeny, rather than host plants.  相似文献   

11.
Terrestrial arthropods are often infected with heritable bacterial symbionts, which may themselves be infected by bacteriophages. However, what role, if any, bacteriophages play in the regulation and maintenance of insect–bacteria symbioses is largely unknown. Infection of the aphid Acyrthosiphon pisum by the bacterial symbiont Hamiltonella defensa confers protection against parasitoid wasps, but only when H. defensa is itself infected by the phage A. pisum secondary endosymbiont (APSE). Here, we use a controlled genetic background and correlation-based assays to show that loss of APSE is associated with up to sevenfold increases in the intra-aphid abundance of H. defensa. APSE loss is also associated with severe deleterious effects on aphid fitness: aphids infected with H. defensa lacking APSE have a significantly delayed onset of reproduction, lower weight at adulthood and half as many total offspring as aphids infected with phage-harbouring H. defensa, indicating that phage loss can rapidly lead to the breakdown of the defensive symbiosis. Our results overall indicate that bacteriophages play critical roles in both aphid defence and the maintenance of heritable symbiosis.  相似文献   

12.
13.
The symbiotic bacteria Buchnera provide their aphid hosts with tryptophan and other essential amino acids. Tryptophan production by Buchnera varied among 12 parthenogenetic clones of the pea aphid Acyrthosiphon pisum (Harris), as determined from both the incorporation of radioactivity from 14C‐anthranilate into tryptophan and the protein‐tryptophan growth rate of larval aphids on tryptophan‐free diet. The values of tryptophan production obtained for the two methods were correlated significantly with each other but not with the level of amplification of the Buchnera genes trpEG, which code for anthranilate synthase, a key enzyme in tryptophan biosynthetic pathway. This study provides the first direct demonstration of interclonal variation in production of any nutrient in an aphid–Buchnera symbiosis and indicates that a key aspect of Buchnera phenotype (tryptophan production) does not vary in a simple fashion with Buchnera genotype.  相似文献   

14.
Impact of a parasitoid on the bacterial symbiosis of its aphid host   总被引:2,自引:0,他引:2  
Embryo production in aphids is absolutely dependent on the function of symbiotic bacteria, mainly Buchnera, and the growth and development of koinobiont parasitoids in aphids requires the diversion of nutrients from aphid embryo production to the parasitoid. The implication that the bacterial symbiosis may be promoted in parasitized aphids to support the growing parasitoid was explored by analysis of the number and biomass of mycetocytes, and the aphid cells bearing Buchnera, in the pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) parasitized by the wasp Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids hosting a young larval parasitoid bore more mycetocytes of greater total biomass, and embryos of lower biomass than unparasitized aphids. Furthermore, one of the three aphid clones tested, which limited teratocyte growth (giant cells of parasitoid origin having a trophic role), bore smaller mycetocytes and larger embryos, than one or both of the two aphid clones with greater susceptibility to the parasitoid. These data suggest that susceptibility of the aphid‐Buchnera symbiosis to parasitoid‐mediated manipulation may, directly or indirectly, contribute to aphid susceptibility to parasitoid exploitation.  相似文献   

15.
We wanted to test whether Mollitrichosiphum, an aphid genus with life cycles on subtropical woody host plants, and Buchnera, the primary endosymbiont of aphids, evolve in parallel. We used three aphid genes (mitochondrial COI, cytochrome oxidase subunit I and Cytb, cytochrome b; nuclear EF1α, translation elongation factor 1 alpha) and two Buchnera genes (16S rDNA; gnd, gluconate‐6‐phosphate dehydrogenase) to reconstruct phylogenies. The congruence between the phylogenetic trees of aphids and Buchnera was then measured. The results present phylogenetic evidence for the parallel evolution of Mollitrichosiphum and Buchnera at the intraspecific as well as the interspecific levels. Our results support the possibility of using endosymbiont genes to study host evolutionary history and biogeographical patterns. We also investigated the usability of the Buchnera gnd gene as a barcoding marker for aphid identification.  相似文献   

16.
In natural populations of the pea aphid Acyrthosiphon pisum, a facultative bacterial symbiont of the genus Rickettsia has been detected at considerable infection frequencies worldwide. We investigated the effects of the Rickettsia symbiont on the host aphid and also on the coexisting essential symbiont Buchnera. In situ hybridization revealed that the Rickettsia symbiont was specifically localized in two types of host cells specialized for endosymbiosis: secondary mycetocytes and sheath cells. Electron microscopy identified bacterial rods, about 2 μm long and 0.5 μm thick, in sheath cells of Rickettsia-infected aphids. Virus-like particles were sometimes observed in association with the bacterial cells. By an antibiotic treatment, we generated Rickettsia-infected and Rickettsia-eliminated aphid strains with an identical genetic background. Comparison of these strains revealed that Rickettsia infection negatively affected some components of the host fitness. Quantitative PCR analysis of the bacterial population dynamics identified a remarkable interaction between the coexisting symbionts: Buchnera population was significantly suppressed in the presence of Rickettsia, particularly at the young adult stage, when the aphid most actively reproduces. On the basis of these results, we discussed the possible mechanisms that enable the prevalence of Rickettsia infection in natural host populations in spite of the negative fitness effects observed in the laboratory.  相似文献   

17.
Huang CY  Lee CY  Wu HC  Kuo MH  Lai CY 《Microbial ecology》2008,56(4):696-703
The endosymbiotic bacterium Buchnera provides its aphid host with essential amino acids. Buchnera is typical of intracellular symbiotic and parasitic microorganisms in having a small effective population size, which is believed to accelerate genetic drift and reduce the stability of gene products. It is hypothesized that Buchnera mitigates protein instability with an increased production of the chaperonins GroESL. In this paper, we report the expression and functional analysis of trpE, a plasmid-borne fast-evolving gene encoding the tryptophan biosynthesis enzyme anthranilate synthase. We overcame the problem of low enzyme stability by using an anthranilate synthase-deficient mutant of E. coli as the expression host and the method of genetic complementation for detection of the enzyme activity. We showed that the Buchnera anthranilate synthase was only weakly active at the temperature of 26°C but became inactive at the higher temperatures of 32°C and 37°C and that the coexpression with chaperonin genes groESL of E. coli enhanced the function of the Buchnera enzyme. These findings are consistent with the proposed role of groESL in the Buchnera–aphid symbiosis.  相似文献   

18.
19.
Aphids possess several facultative bacterial symbionts that have important effects on their hosts'' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species.  相似文献   

20.
Immune responses evolve to balance the benefits of microbial killing against the costs of autoimmunity and energetic resource use. Models that explore the evolution of optimal immune responses generally include a term for constitutive immunity, or the level of immunological investment prior to microbial exposure, and for inducible immunity, or investment in immune function after microbial challenge. However, studies rarely consider the functional form of inducible immune responses with respect to microbial density, despite the theoretical dependence of immune system evolution on microbe‐ versus immune‐mediated damage to the host. In this study, we analyse antimicrobial peptide (AMP) gene expression from seven wild‐caught flour beetle populations (Tribolium spp.) during acute infection with the virulent bacteria Bacillus thuringiensis (Bt) and Photorhabdus luminescens (P.lum) to demonstrate that inducible immune responses mediated by the humoral IMD pathway exhibit natural variation in both microbe density‐dependent and independent temporal dynamics. Beetle populations that exhibited greater AMP expression sensitivity to Bt density were also more likely to die from infection, while populations that exhibited higher microbe density‐independent AMP expression were more likely to survive P. luminescens infection. Reduction in pathway signalling efficiency through RNAi‐mediated knockdown of the imd gene reduced the magnitude of both microbe‐independent and dependent responses and reduced host resistance to Bt growth, but had no net effect on host survival. This study provides a framework for understanding natural variation in the flexibility of investment in inducible immune responses and should inform theory on the contribution of nonequilibrium host‐microbe dynamics to immune system evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号