首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
2.
Gene duplication is thought to be the main potential source of material for the evolution of new gene functions. Several models have been proposed for the evolution of new functions through duplication, most based on ancient events (Myr). We provide molecular evidence for the occurrence of several (at least 3) independent duplications of the ace-1 locus in the mosquito Culex pipiens, selected in response to insecticide pressure that probably occurred very recently (<40 years ago). This locus encodes the main target of several insecticides, the acetylcholinesterase. The duplications described consist of 2 alleles of ace-1, 1 susceptible and 1 resistant to insecticide, located on the same chromosome. These events were detected in different parts of the world and probably resulted from distinct mechanisms. We propose that duplications were selected because they reduce the fitness cost associated with the resistant ace-1 allele through the generation of persistent, advantageous heterozygosis. The rate of duplication of ace-1 in C. pipiens is probably underestimated, but seems to be rather high.  相似文献   

3.
4.
5.
6.
The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposable elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators.  相似文献   

7.
An anthropoid-specific segmental duplication on human chromosome 1q22   总被引:1,自引:0,他引:1  
Segmental duplications (SDs) play a key role in genome evolution by providing material for gene diversification and creation of variant or novel functions. They also mediate recombinations, resulting in microdeletions, which have occasionally been associated with human genetic diseases. Here, we present a detailed analysis of a large genomic region (about 240 kb), located on human chromosome 1q22, that contains a tandem SD, SD1q22. This duplication occurred about 37 million years ago in a lineage leading to anthropoid primates, after their separation from prosimians but before the Old and New World monkey split. We reconstructed the hypothetical unduplicated ancestral locus and compared it with the extant SD1q22 region. Our data demonstrate that, as a consequence of the duplication, new anthropoid-specific genetic material has evolved in the resulting paralogous segments. We describe the emergence of two new genes, whose new functions could contribute to the speciation of anthropoid primates. Moreover, we provide detailed information regarding structure and evolution of the SD1q22 region that is a prerequisite for future studies of its anthropoid-specific functions and possible linkage to human genetic disorders.  相似文献   

8.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

9.
Phylogenetic analyses imply that multiple engrailed-family gene duplications occurred during hexapod evolution, a view supported by previous reports of only a single engrailed-family gene in members of the grasshopper genus Schistocerca and in the beetle Tribolium castaneum. Here, we report the cloning of a second engrailed-family gene from Schistocerca gregaria and present evidence for two engrailed-family genes from four additional hexapod species. We also report the existence of a second engrailed-family gene in the Tribolium genome. We suggest that the engrailed and invected genes of Drosophila melanogaster have existed as a conserved gene cassette throughout holometabolous insect evolution. In total 11 phylogenetically diverse hexapod orders are now known to contain species that possess two engrailed-family paralogues, with in each case only one paralogue encoding the RS-motif, a characteristic feature of holometabolous insect invected proteins. We propose that the homeoboxes of hexapod engrailed-family paralogues are evolving in a concerted fashion, resulting in gene trees that overestimate the frequency of gene duplication. We present new phylogenetic analyses using non-homeodomain amino acid sequence that support this view. The S. gregaria engrailed-family paralogues provide strong evidence that concerted evolution might in part be explained by recurrent gene conversion. Finally, we hypothesize that the RS-motif is part of a serine-rich domain targeted for phosphorylation.  相似文献   

10.
A P450-centric view of plant evolution   总被引:1,自引:0,他引:1  
Being by far the largest family of enzymes to support plant metabolism, the cytochrome P450s (CYPs) constitute an excellent reporter of metabolism architecture and evolution. The huge superfamily of CYPs found in angiosperms is built on the successful evolution of 11 ancestral genes, with very different fates and progenies. Essential functions in the production of structural components (membrane sterols), light harvesting (carotenoids) or hormone biosynthesis kept some of them under purifying selection, limiting duplication and sub/neofunctionalization. One group (the CYP71 clan) after an early trigger to diversification, has kept growing, producing bursts of gene duplications at an accelerated rate. The CYP71 clan now represents more than half of all CYPs in higher plants. Such bursts of gene duplication are likely to contribute to adaptation to specific niches and to speciation. They also occur, although with lower frequency, in gene families under purifying selection. The CYP complement (CYPomes) of rice and the model grass weed Brachypodium distachyon have been compared to view evolution in a narrower time window. The results show that evolution of new functions in plant metabolism is a very long-term process. Comparative analysis of the plant CYPomes provides information on the successive steps required for the evolution of land plants, and points to several cases of convergent evolution in plant metabolism. It constitutes a very useful tool for spotting essential functions in plant metabolism and to guide investigations on gene function.  相似文献   

11.
12.
13.
14.
The genome sequence of the plant model organism Arabidopsis thaliana was presented in December of the year 2000. Since then, the 125 Mb sequence has revealed many of its evolutionary secrets. Through comparative analyses with other plant genomes, we know that the genome of A. thaliana, or better that of its ancestors, has undergone at least three whole genome duplications during the last 120 or so million years. The first duplication seems to have occurred at the dawn of dicot evolution, while the later duplications probably occurred <70 million years ago (Ma). One of those younger genome-wide duplications might be linked to the K-T extinction. Following these duplication events, the ancestral A. thaliana genome was hugely rearranged and gene copies have been massively lost. During the last 10 million years of its evolution, almost half of its genome was lost due to hundreds of thousands of small deletions. Here, we reconstruct plant genome evolution from the early angiosperm ancestor to the current A. thaliana genome, covering about 150 million years of evolution characterized by gene and genome duplications, genome rearrangements and genome reduction.  相似文献   

15.
16.
Katju V  Lynch M 《Genetics》2003,165(4):1793-1803
The significance of gene duplication in provisioning raw materials for the evolution of genomic diversity is widely recognized, but the early evolutionary dynamics of duplicate genes remain obscure. To elucidate the structural characteristics of newly arisen gene duplicates at infancy and their subsequent evolutionary properties, we analyzed gene pairs with < or =10% divergence at synonymous sites within the genome of Caenorhabditis elegans. Structural heterogeneity between duplicate copies is present very early in their evolutionary history and is maintained over longer evolutionary timescales, suggesting that duplications across gene boundaries in conjunction with shuffling events have at least as much potential to contribute to long-term evolution as do fully redundant (complete) duplicates. The median duplication span of 1.4 kb falls short of the average gene length in C. elegans (2.5 kb), suggesting that partial gene duplications are frequent. Most gene duplicates reside close to the parent copy at inception, often as tandem inverted loci, and appear to disperse in the genome as they age, as a result of reduced survivorship of duplicates located in proximity to the ancestral copy. We propose that illegitimate recombination events leading to inverted duplications play a disproportionately large role in gene duplication within this genome in comparison with other mechanisms.  相似文献   

17.
Gene duplication provides much of the raw material from which functional diversity evolves. Two evolutionary mechanisms have been proposed that generate functional diversity: neofunctionalization, the de novo acquisition of function by one duplicate, and subfunctionalization, the partitioning of ancestral functions between gene duplicates. With protein interactions as a surrogate for protein functions, evidence of prodigious neofunctionalization and subfunctionalization has been identified in analyses of empirical protein interactions and evolutionary models of protein interactions. However, we have identified three phenomena that have contributed to neofunctionalization being erroneously identified as a significant factor in protein interaction network evolution. First, self-interacting proteins are underreported in interaction data due to biological artifacts and design limitations in the two most common high-throughput protein interaction assays. Second, evolutionary inferences have been drawn from paralog analysis without consideration for concurrent and subsequent duplication events. Third, the theoretical model of prodigious neofunctionalization is unable to reproduce empirical network clustering and relies on untenable parameter requirements. In light of these findings, we believe that protein interaction evolution is more persuasively characterized by subfunctionalization and self-interactions.  相似文献   

18.
Polyploidy events (polyploidization) followed by progressive loss of redundant genome components are a major feature of plant evolution, with new evidence suggesting that all flowering plants possess ancestral genome duplications. Furthermore, many of our most important crop plants have undergone additional, relatively recent, genome duplication events. Recent advances in DNA sequencing have made vast amounts of new genomic data available for many plants, including a range of important crop species with highly duplicated genomes. Along with assisting traditional forward genetics approaches to study gene function, this wealth of new sequence data facilitates extensive reverse genetics-based functional analyses. However, plants featuring high levels of genome duplication as a result of recent polyploidization pose additional challenges for reverse genetic analysis. Here we review reverse genetic analysis in such polyploid plants and highlight key challenges.  相似文献   

19.
B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution of B genes is characterized by numerous duplications that might represent key elements fostering the functional diversification of duplicates with a deep impact on their role in the evolution of the floral developmental program. To evaluate this, we performed a rigorous statistical analysis with B gene sequences. Using maximum likelihood and Bayesian methods, we estimated molecular substitution rates and determined the selective regimes operating at each residue of B proteins. We implemented tests that rely on phylogenetic hypotheses and codon substitution models to detect significant differences in substitution rates (DSRs) and sites under positive adaptive selection (PS) in specific lineages before and after duplication events. With these methods, we identified several protein residues fixed by PS shortly after the origin of PISTILLATA-like and APETALA3-like lineages in angiosperms and shortly after the origin of the euAP3-like lineage in core eudicots, the 2 main B gene duplications. The residues inferred to have been fixed by positive selection lie mostly within the K domain of the protein, which is key to promote heterodimerization. Additionally, we used a likelihood method that accommodates DSRs among lineages to estimate duplication dates for AP3-PI and euAP3-TM6, calibrating with data from the fossil record. The dates obtained are consistent with angiosperm origins and diversification of core eudicots. Our results strongly suggest that novel multimer formation with other MADS proteins could have been crucial for the functional divergence of B MADS-box genes. We thus propose a mechanism of functional diversification and persistence of gene duplicates by the appearance of novel multimerization capabilities after duplications. Multimer formation in different combinations of regulatory proteins can be a mechanistic basis for the origin of novel regulatory functions and a gene regulatory mechanism for the appearance of morphological innovations.  相似文献   

20.
Gene duplication has been recognized as a major route to supply raw sequences for genome novelty in evolution, but the mechanism underlying the retention of duplicate genes is not fully understood yet. Divergence in spatial expression patterns was investigated here and in response to stimuli of the four members of a rice proline-rich protein gene family (OsPRP1), which encode a class of proline-rich proteins. The four paralogues are tandemly organized within a 20 kbp range of chromosome 10 without any interval of other open reading frames and with a median K(S) value of 0.474. These paralogues showed little similarity in their regulatory regions but high conservation in coding regions. Search of an intergenomic cis-element database predicted their promoter regions with divergent cis-element fingerprints. Further expression analyses involving different tissues/organs and nine types of stimuli by a promoter::GUS-fusion strategy revealed that the four paralogues were expressed mainly in vascular cylinders of different organs and showed diversity in tissue/organ specificity and in response to these stimuli, with some overlapping expression. Furthermore, these data show that OsPRP1.2 appeared to inherit most of the functions from their multifunctional progenitor, whereas the other three genes diverged after duplication events. Thus, the retention of paralogues in a multigene family seems to require a more complicated diversification process than originally thought. In addition, the promoter::GUS strategy is a powerful way to explore function divergence of a tandem-repeat gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号