首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
金飞宇  束华杰  刘建  管章楠  张淑萍 《生态学报》2016,36(11):3156-3166
玫瑰(Rosa rugosa Thunb.)原产于我国东部沿海、日本、朝鲜半岛和俄罗斯远东地区,18世纪作为园艺种引入欧洲后逃逸并入侵至北海和波罗的海周边多个国家以及北美沙质海岸,而中国野生种群却在过去30年间持续萎缩,成为珍稀濒危物种。从玫瑰种群生物学角度,通过文献比较和综合,在阐明玫瑰生态学特性和野生分布变化的基础上,全面论述了玫瑰种群在我国的生境退化、种群动态、种子繁殖、遗传多样性、濒危机理、保育方面的成果和悬疑问题;并结合欧洲入侵种群分布范围和敏感生境、对本地群落和物种的影响、种子繁殖、遗传变异、种群扩张和模拟预测、管理和控制方面的研究进展,分析了濒危种群和入侵种群数量动态、群落组成、幼苗更新、遗传变异、管理策略方面的差异及其影响因素;进而提出未来的玫瑰研究可从濒危种群和入侵种群的比较研究、种群和灌丛的动态监测、适合度相关性状的变异及其遗传基础、基于种群生物学的保育或控制4个方面为切入点,集中探索玫瑰种群濒危和入侵动态的规律、遗传基础和主要驱动力,为玫瑰保育和管理提供理论依据,为相似物种的适应和进化机制研究提供例证。  相似文献   

2.
珠江源头入侵种波氏吻虾虎的遗传多样性分析   总被引:1,自引:0,他引:1  
为了解入侵种波氏吻虾虎Rhinogobius cliffordpopei在珠江源头地区的遗传多样性分布特征及其影响成因,本研究以线粒体细胞色素b(cyt b)基因为分子标记,对珠江源头的9个水库自然种群进行了遗传多样性与遗传分化分析。获得该物种cyt b基因全序列1 141 bp,其中保守位点1 072个,变异位点69个,无插入和缺失位点。96只个体具有5个单倍型,群体单倍型多样性为0.359±0.059,核苷酸多样性为0.021±0.010,表现为低单倍型多样性与高核苷酸多样性的群体遗传特征。以外群子陵吻虾虎R.giurinus、褐吻虾虎R.brunneus和短吻红斑吻虾虎R.rubromaculatus构建的分子系统发育树和网络分支图显示,波氏吻虾虎群体的所有单倍型与外群物种分开,构成一个单系群,并分化为2个明显的系统分支。分子变异分析结果表明,种群间和种群内的遗传变异率分别为62.99%、37.01%,固定指数为0.630(P<0.01),证实波氏吻虾虎群体形成了显著的遗传分化结构。波氏吻虾虎在珠江源头入侵地具有较高的遗传多样性水平与显著的遗传结构,入侵种群可能受到了奠基者事件和遗传瓶颈效应的影响,而多次人为引入和水利大坝的隔离作用可能为该物种扩散分布和积累突变提供了条件。研究结果将为防治波氏吻虾虎的入侵危害及保护土著鱼类物种多样性提供科学指导。  相似文献   

3.
阔苞菊(Pluchea indica)是一种红树林伴生植物,以其在原产地的药用特性和部分引入地的入侵性而闻名。本研究旨在评估阔苞菊在其分布范围内遗传变异的地理分布,确定影响其遗传结构的因素,并利用这些信息对阔苞菊在原产地和引入地的保护和管理策略提出建议。 我们以来自阔苞菊原产地(亚洲)和引入地(美国)的31个种群共348个个体的15个核微卫星位点数据对阔苞菊的遗传多样性和种群结构进行了评估。在大尺度范围以及局部区域两种空间尺度上对阔苞菊遗传变异的空间格局进行了探讨,并验证了以下假说:地理距离和自然地理屏障将影响种群结构并在空间尺度上产生不同程度的分化。研究结果表明,与所研究区域内的其它红树林物种的遗传多样性参数相比, 我们发现阔苞菊在种群水平上具有相对较高的遗传多样性以及在物种水平上具有明显的遗传分化。大多数阔苞菊种群显示杂合子缺失, 这主要是由于近交和有限的基因流所导致。在较大空间尺度上进行的种群结构分析显示,该物种自然分布范围内存在两个主要遗传谱系,中国的种群与印度尼西亚、马来西亚、新加坡、泰国、柬埔寨和菲律宾的种群分别属于不同的谱系,而美国的种群可能来自于中国的谱系。 此外,在局部区域范围内也同样检测到种群之间的遗传分化。大部分阔苞菊种群所表现出的遗传瓶颈效应强调了其具有本地灭绝的风险。基于上述研究结果,我们建议采用原位保护策略对阔苞菊进行管理,并开展对优先保护种群的保护行动以维持遗传多样性。  相似文献   

4.
云南洞密蛛Trogloneta yunnanense(Song&Zhu, 1994)是生活在云贵高原的一种洞穴蜘蛛。本文基于6个洞穴种群159只个体样本的线粒体COⅠ基因,初步探讨了该物种的种群结构和遗传多样性特征。研究结果表明:1)159个样本共检测到16个单倍型,种群间无共享单倍型,遗传多样性呈现出总体高、种群内低、单倍型多样性高、核苷酸多样性低的模式;2)种群间遗传分化极显著,种群内变异小,种群间FST值均在0.9以上(P<0.01),种群间基因流小(Nm=0.01),种群间变异占总变异的95.75%,种群内变异仅占4.25%;3)中性检验和核苷酸错配分布检验显示,云南洞密蛛未经历种群扩张,群体大小保持稳定。推测洞穴隔离和地下极端环境条件可能维持着云南洞密蛛的种群规模稳定,同时促进其种群间的遗传分化。  相似文献   

5.
人类活动所引起的栖息地毁坏已成为当前物种多样性丧失的最主要的原因之一。空间显含模型相对于空间隐含模型来说,更加接近于现实,因此,通过元胞自动机,模拟了物种多样性对万年、千年、百年时间尺度人类活动所引起的栖息地毁坏的响应。研究结果表明:万年时间尺度上,物种是由强到弱的灭绝;而在千年时间尺度上,物种灭绝的序受集合种群结构的影响较大;在百年时间尺度上。物种由于栖息地毁坏过于剧烈和迅速,来不及作出响应。在栖息地完全毁坏时集体灭绝。因此,物种灭绝序不只是受竞争-侵占均衡机制的影响,还受不同时间尺度(不同速率)栖息地毁坏的影响。以及集合种群结构的影响。  相似文献   

6.
小蓬草入侵地和原产地种群的遗传多样性和种群结构 外来入侵植物对全球生物多样性造成了危害。小蓬草(Erigeron canadensis L.)是危害最为严重的外来农业杂草之一,代表了洲际入侵的典型例子。本研究利用10个多态性SSR位点,分别对采自中国江苏和浙江省的入侵地和采自美国阿拉巴马州的原产地各5个种群、共计312个植株的基因型进行了遗传多样性和遗传结构分析。结果表明,江苏省和浙江省的入侵种群显示出与阿拉巴马州原产地种群相似的遗传多样性,表明入侵期间没有严重的遗传瓶颈。利用STRUCTURE对种群结构的分析结果显示,种群之间分化较低,在原产地和入侵范围内均只仅检测到两个基因群。在入侵种群中观察到的遗传多样性较高,表明在入侵初期可能存在多次引入或引入了遗传背景不同的繁殖体。上述研究为阐明小蓬草这一全球有害杂草在中国东部的入侵动态提供了新的证据。在防除实践中,应注意防范小蓬草入侵种群和本地种群之间的种子基因流传播,阻止除草剂抗性植株的引入和扩散。  相似文献   

7.
高原鼢鼠线粒体谱系地理学和遗传多样性   总被引:4,自引:1,他引:3  
高原鼢鼠是一类地下独居啮齿动物,为青藏高原特有种之一。为研究该物种的谱系地理学和遗传多样性,本文测定了采自青藏高原东部3个地理种群8个小种群共37个个体的线粒体D-loop区序列变异。在长度为627bp的序列中,共发现50个变异位点,定义了26种单倍型。该物种的单倍型多样性(Haplotype diversity,H)较高和核苷酸多样性(Nucleotide diversity,πn)较低。谱系分析得到3个稳定的分支,分别与采集的地理种群相吻合:同一地理种群内单倍型之间遗传差异小,而不同地理来源的单倍型之间存在较大区别。距离隔离分析表明高原鼢鼠的遗传分化与地理距离呈正相关。AMOVA分析同样表明地理种群之间存在显著差异:地理种群间变异占遗传变异的80.45%。高原鼢鼠的这种遗传结构特点可能主要是由于第四纪气候变迁、该物种稳定的地下生活环境和有限的迁移能力造成的。  相似文献   

8.
红根草是一个有重要药用价值的珍稀濒危药材植物。为了更好地了解红根草野生和组培快繁种质的遗传多样性信息,本文用RAPD和ISSR分子标记技术,对红根草4个野生种群及一个离体快繁群体进行遗传多样性分析,为物种保护和繁育提供理论依据。结果显示,在物种水平上,该物种的遗传多样性水平中等,Nei基因多样性指数(H)、Shannon信息多样性指数(I)和多态性位点百分率(PPL)分别为0.237/0.248(RAPD/ISSR,下同)、0.365/0.380和78.4%/81.1%;遗传变异大多数(70.5%/81.5%)发生在种群内、少部分(29.5%/18.5%)发生在种群间;野生种群的基因流为1.21/2.20,但UPGMA聚类分析结果表明,距离35km以上的种群遗传分化明显,因此推测基因流动主要存在于种群内,地理距离是种群分化的主要原因。在居群水平上,H、I和PPL三项遗传多样性参数分别为0.167/0.202、0.253/0.303和51.7%/58.0%;离体快繁群体的RAPD分析结果显示,其遗传多样性高于其原野生种群,这一结果暗示,离体快繁过程中可能发生了体细胞变异,这些变异与RAPD-PCR区域有关。  相似文献   

9.
用ISSR标记分析不同地区紫茎泽兰种群的遗传变异   总被引:8,自引:0,他引:8  
利用ISSR标记技术分析了我国32个紫茎泽兰地理种群的遗传多样性,结果表明入侵我国的紫茎泽兰具有较大的遗传多样性,物种水平上的Nei's基因多样性为0.235,shannon's指数为0.372。种群间的遗传分化研究表明,大部分变异存在于种群内,总体遗传多样性中仅34.5%来源于种群之间。紫茎泽兰种群间的遗传距离矩阵和空间距离矩阵之间呈轻度正相关(r=0.542,P<0.001),说明地理隔离可能是阻碍紫茎泽兰种群间基因交流的原因之一。不同海拔高度紫茎泽兰种群的遗传多样性水平呈现随海拔升高而降低的趋势(r=0.368,P<0.001),各海拔区域种群的平均ISSR标记Nei's基因多样性和Shannon's指数均随海拔升高而有所降低。  相似文献   

10.
喜旱莲子草茎叶解剖结构从原产地到入侵地的变异式样   总被引:4,自引:1,他引:3  
长期以来人们一直认为,外来种入侵及其危害是由于一个物种从原产地到入侵地其环境因子改变(如天敌压力的减弱等)而导致的。近年来,越来越多的研究者开始认识到,生物入侵过程实际上是一个现代人类活动影响下的物种的快速进化过程,生物入侵的进化遗传学已成为入侵生物学研究中最活跃的分支之一。作者比较了来自原产地(阿根廷)和入侵地(中国和美国)的喜旱莲子草(Alternantheraphiloxeroides)的11个种群在茎、叶解剖结构方面的变异式样,发现所研究的19个性状在原产地(阿根廷)和入侵地(中国和美国)的变异情况明显不同:在原产地种群中,共有9个性状指标存在显著差异,遗传率在49–89%之间,这9个性状是气孔密度、气孔指数、茎直径、髓腔直径、维管柱直径、皮层厚度、维管柱面积比、髓腔面积比和叶形指数;而在入侵地种群间,19个性状指标均无明显差异。这表明喜旱莲子草从原产地到入侵地其遗传多样性降低;入侵地喜旱莲子草种群间的形态变异主要为表型可塑性。根据19个形态指标对喜旱莲子草11个种群进行主成分分析和聚类,结果显示:所有入侵地种群和原产地的Ar1种群(SantaFé,59°49′W,29°16′S)聚为一类,原产地的Ar4(Tandil,59°03′W,37°11′S)单独聚为一类,原产地的其他4个种群聚为一类。表明Ar1种群可能与入侵中国的喜旱莲子草在基因型上更为接近。这一结果为进一步揭示喜旱莲子草入侵机理(如杂交适应性)和在原产地寻求对应天敌的生物防治工作提供了基础数据。  相似文献   

11.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

12.
Aim To explore the potential of genetic processes and mating systems to influence successful plant invasions, we compared genetic diversity of the highly invasive tropical treelet, Miconia calvescens, in nine invasive populations and three native range populations. Specifically, we tested how genetic diversity is partitioned in native and invaded regions, which have different invasion histories (multiple vs. single introductions). Lastly, we infer how levels of inbreeding in different regions impact invasion success. Location Invaded ranges in the Pacific (Hawaii, Tahiti, New Caledonia) and Australia and native range in Costa Rica. Methods Genetic diversity was inferred by analysing variation at nine microsatellite loci in 273 individuals from 13 populations of M. calvescens. Genetic structure was assessed using amova , isolation by distance (IBD) within regions, a Bayesian clustering approach, and principal coordinates analysis. Results Microsatellite analysis revealed that invaded regions exhibit low levels of allelic richness and genetic diversity with few private alleles. To the contrary, in the native range, we observed high levels of allelic richness, high heterozygosity and 78% of all private alleles. Surprisingly, despite evident genetic bottlenecks in all invasive regions, similarly high levels of inbreeding were detected in both invasive and native ranges (FIS: 0.345 and 0.399, respectively). Bayesian clustering analysis showed a lack of geographical structure in the Pacific and evidence of differing invasion histories between the Pacific and Australia. While Pacific populations are derived from a single introduction to the region, multiple introductions have taken place in Australia from different source regions. Main conclusions Multiple introductions have not resulted in increased genetic diversity for M. calvescens invasions. Moreover, similar inbreeding levels between native and invaded ranges suggests that there is no correlation between levels of inbreeding and levels of standing genetic diversity for M. calvescens. Overall, our results show that neither inbreeding nor low genetic diversity is an impediment to invasion success.  相似文献   

13.
Biological invasions offer excellent systems to study the evolutionary processes involved in introductions of species to new ranges. Molecular markers can reveal invasion histories and the effects of introductions on amounts and structuring of genetic variation. We used five polymorphic microsatellite loci to elucidate genetic diversity and population structure between native range and introduced range populations of a prominent North American rangeland weed, Centaurea diffusa (Asteraceae). We found that the total number of alleles and the number of private alleles was slightly higher in the native Eurasian range, and that allelic richness did not differ between the ranges, indicating overall levels of diversity were similar in Eurasia and North America. It therefore seems unlikely that this invasion has been affected by genetic bottlenecks or founder effects. Indeed, results of assignment tests suggest that multiple introductions have contributed to North America’s C. diffusa invasion. Additionally, assignment tests show that both Eurasian and North American sites had a strong pattern of mixed genetic ancestry. This mixed assignment corresponded to a lack of geographic population structure among Eurasian samples. The lack of population structure in the native range conflicts with general expectations and findings to date for invasion genetics, and cautions that even species’ native ranges may show signs of recent ecological upheaval. Despite the mixed assignments, North American samples showed strong population structure, suggesting that the invasion has been characterized by long-range dispersal of genetically distinct propagules across the introduced range.  相似文献   

14.
Identifying sources of genetic variation and reconstructing invasion routes for non‐native introduced species is central to understanding the circumstances under which they may evolve increased invasiveness. In this study, we used genome‐wide single nucleotide polymorphisms to study the colonization history of Centaurea solstitialis in its native range in Eurasia and invasions into the Americas. We leveraged this information to pinpoint key evolutionary shifts in plant size, a focal trait associated with invasiveness in this species. Our analyses revealed clear population genomic structure of potential source populations in Eurasia, including deep differentiation of a lineage found in the southern Apennine and Balkan Peninsulas and divergence among populations in Asia, eastern Europe and western Europe. We found strongest support for an evolutionary scenario in which western European populations were derived from an ancient admixture event between populations from eastern Europe and Asia, and subsequently served as the main genetic ‘bridgehead’ for introductions to the Americas. Introductions to California appear to be from a single source region, and multiple, independent introductions of divergent genotypes likely occurred into the Pacific Northwest. Plant size has evolved significantly at three points during range expansion, including a large size increase in the lineage responsible for the aggressive invasion of the California interior. These results reveal a long history of colonization, admixture and trait evolution in C. solstitialis, and suggest routes for improving evidence‐based management decisions for one of the most ecologically and economically damaging invasive species in the western United States.  相似文献   

15.
16.
Paradox lost: genetic diversity and the success of aquatic invasions   总被引:9,自引:0,他引:9  
There is mounting evidence that reduced genetic diversity in invasive populations is not as commonplace as expected. Recent studies indicate that high propagule vectors, such as ballast water and shellfish transplantations, and multiple introductions contribute to the elimination of founder effects in the majority of successful aquatic invasions. Multiple introductions, in particular, can promote range expansion of introduced populations through both genetic and demographic mechanisms. Closely related to vectors and corridors of introduction, propagule pressure can play an important role in determining the genetic outcome of introduction events. Even low-diversity introductions have numerous means of avoiding the negative impact of diversity loss. The interaction of high propagule vectors and multiple introductions reveal important patterns associated with invasion success and deserve closer scrutiny.  相似文献   

17.
European starlings (Sturnus vulgaris) represent one of the most widespread and problematic avian invasive species in the world. Understanding their unique population history and current population dynamics can contribute to conservation efforts and clarify evolutionary processes over short timescales. European starlings were introduced to Central Park, New York in 1890, and from a founding group of about 100 birds, they have expanded across North America with a current population of approximately 200 million. There were also multiple introductions in Australia in the mid‐19th century and at least one introduction in South Africa in the late 19th century. Independent introductions on these three continents provide a robust system to investigate invasion genetics. In this study, we compare mitochondrial diversity in European starlings from North America, Australia, and South Africa, and a portion of the native range in the United Kingdom. Of the three invasive ranges, the North American population shows the highest haplotype diversity and evidence of both sudden demographic and spatial expansion. Comparatively, the Australian population shows the lowest haplotype diversity, but also shows evidence for sudden demographic and spatial expansion. South Africa is intermediate to the other invasive populations in genetic diversity but does not show evidence of demographic expansion. In previous studies, population genetic structure was found in Australia, but not in South Africa. Here we find no evidence of population structure in North America. Although all invasive populations share haplotypes with the native range, only one haplotype is shared between invasive populations. This suggests these three invasive populations represent independent subsamples of the native range. The structure of the haplotype network implies that the native‐range sampling does not comprehensively characterize the genetic diversity there. This study represents the most geographically widespread analysis of European starling population genetics to date.  相似文献   

18.
Biological invasions may combine the genetic effects of population bottlenecks and selection and thus provide valuable insight into the role of such processes during novel environmental colonizations. However, these processes are also influenced by multiple invasions, the number of individuals introduced and the degree of similarity between source and receiving habitats. The amphipod Gammarus tigrinus provides a useful model to assess these factors, as its invasion history has involved major environmental transitions. This species is native to the northwest Atlantic Ocean, although it invaded both brackish and freshwater habitats in the British Isles after introduction more than 65 years ago. It has also spread to similar habitats in Western Europe and, most recently, to Eastern Europe, the Baltic Sea, and the Laurentian Great Lakes. To examine sources of invasion and patterns of genetic change, we sampled populations from 13 native estuaries and 19 invaded sites and sequenced 542 bp of the mitochondrial COI gene. Strong native phylogeographical structure allowed us to unambiguously identify three allopatrically evolved clades (2.3-3.1% divergent) in invading populations, indicative of multiple introductions. The most divergent clades occurred in the British Isles and mainland Europe and were sourced from the St Lawrence and Chesapeake/Delaware Bay estuaries. A third clade was found in the Great Lakes and sourced to the Hudson River estuary. Despite extensive sampling, G. tigrinus did not occur in freshwater at putative source sites. Some European populations showed reduced genetic diversity consistent with bottlenecks, although selection effects cannot be excluded. The habitat distribution of clades in Europe was congruent with the known invasion history of secondary spread from the British Isles. Differences in salinity tolerance among lineages were suggested by patterns of habitat colonization by different native COI clades. Populations consisting of admixtures of the two invading clades were found principally at recently invaded fresh and brackish water sites in Eastern Europe, and were characterized by higher genetic diversity than putative source populations. Further studies are required to determine if these represent novel genotypes. Our results confirm that biological invasions need not result in diminished genetic diversity, particularly if multiple source populations, each with distinctive genetic composition, contribute to the founding populations.  相似文献   

19.
Daphnia lumholtzi is a planktonic crustacean native to subtropical regions in Africa, Asia and Australia. Since its invasion to the southern USA in ~1990 it has spread across North America as far north as the Laurentian Great Lakes. We assessed invasion history using microsatellite makers and to explore the influence of mean annual temperature on the genetic structure along a latitudinal gradient in North America. Genotypic data were obtained from 9 microsatellite markers for 178 individuals from 13 populations (eight populations introduced to North America and five populations in the native range). Pairwise Fst values as well as Bayesian clustering showed a strong subdivision between native and introduced populations. Bayesian clustering identified multiple genetic clusters in recently invaded locations, suggestive of multiple invasions from various sources, including Asia and Africa. Using variation partitioning, we determined the amount of variation for genetic clusters of populations in the invaded range due to mean annual air temperature and the year of first detection. The results point to a primary introduction into the southern range of North America, with a subsequent northward expansion, and multiple introductions possibly from both the native range and by secondary spread from previously-invaded locations. Separate analysis of genetic clusters within the invaded range suggests additional effects of temperature conditions on geographic genetic structure, possibly as a consequence of D. lumholtzi’s tropical origin.  相似文献   

20.
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号