首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 453 毫秒
1.
By using a genomic fragment that carries the rice (Oryza sativa L.) fertility restorer gene, Rf-1, rice restorer lines harbouring multiple Rf-1 genes on different chromosomes were developed by genetic engineering and crossing. Hybrid lines that were obtained by crossing the restorer lines having two and three Rf-1 genes with a cytoplasmic male sterile (CMS) line had nearly 75 and 87.5% pollen fertility rates under a normal condition, respectively, whereas a conventional hybrid line showed a 50% pollen fertility rate. Furthermore, the seed set percentage under low temperature conditions was much higher in the hybrid lines with multiple Rf-1 genes than the conventional hybrid line. These results indicate that multiplication of the Rf-1 gene conferred cold tolerance at the booting stage to hybrid rice through increasing the potentially fertile pollen grains. This strategy to improve fertility at low temperature of hybrids could be applied to any grain crops that are developed based on CMS and its gametophytic restorer gene, let alone rice.  相似文献   

2.
3.
Kazama T  Toriyama K 《FEBS letters》2003,544(1-3):99-102
A fertility restorer gene (Rf-1) of [ms-bo] cytoplasmic male sterility (CMS) in rice has been reported to be responsible for the processing of RNA of aberrant atp6 of mitochondria. We have carried out map-based cloning of the Rf-1 gene and found that a 4.7-kb genomic fragment of a restorer line promoted the processing of aberrant atp6 RNA when introduced into a CMS line. The genomic fragment contained a single open reading frame encoding 18 repeats of the 35 amino acid pentatricopeptide repeat (PPR) motif. The cloned PPR gene is a possible candidate of Rf-1. A non-restoring genotype was identified to have deletions within the coding region.  相似文献   

4.
Wang Z  Zou Y  Li X  Zhang Q  Chen L  Wu H  Su D  Chen Y  Guo J  Luo D  Long Y  Zhong Y  Liu YG 《The Plant cell》2006,18(3):676-687
Cytoplasmic male sterility (CMS) and nucleus-controlled fertility restoration are widespread plant reproductive features that provide useful tools to exploit heterosis in crops. However, the molecular mechanism underlying this kind of cytoplasmic-nuclear interaction remains unclear. Here, we show in rice (Oryza sativa) with Boro II cytoplasm that an abnormal mitochondrial open reading frame, orf79, is cotranscribed with a duplicated atp6 (B-atp6) gene and encodes a cytotoxic peptide. Expression of orf79 in CMS lines and transgenic rice plants caused gametophytic male sterility. Immunoblot analysis showed that the ORF79 protein accumulates specifically in microspores. Two fertility restorer genes, Rf1a and Rf1b, were identified at the classical locus Rf-1 as members of a multigene cluster that encode pentatricopeptide repeat proteins. RF1A and RF1B are both targeted to mitochondria and can restore male fertility by blocking ORF79 production via endonucleolytic cleavage (RF1A) or degradation (RF1B) of dicistronic B-atp6/orf79 mRNA. In the presence of both restorers, RF1A was epistatic over RF1B in the mRNA processing. We have also shown that RF1A plays an additional role in promoting the editing of atp6 mRNAs, independent of its cleavage function.  相似文献   

5.
The cytoplasmic male sterility (CMS) of wild-abortive (WA) cytoplasm has been widely used for breeding hybrid rice. Two restorer genes for the CMS have been found by traditional genetic analysis. To tag the restorer genes we used a set of near-isogenic lines (NILs) of Zhenshan 97 carrying different genotypes for fertility restoration from IR24, to perform RAPD analysis. From the survey of 720 random primers, six RAPD markers were identified to be associated with Rf-3. Three of these OPK05-800, OPU10-1100 and OPW01-350, were mapped on chromosome 1. Two populations from the crosses between Zhenshan 97 A and a near-isogenic restorer line ZSR21 and between Zhenshan 97 A and IR24 were used for mapping Rf-3. The three RAPD markers and three RFLP markers, RG532, RG140 and RG458, were found to be closely linked to Rf-3 in the two populations. The same location of Rf-3 was also found in a population from the cross of IR58025 A//IR36/IR58025 B. At the RG532 locus, different alleles were found between two CMS lines, Zhenshan 97 A and IR58025 A, and between two restorer lines, IR24 and IR36. The use of these molecular markers closely linked to Rf-3 in facilitating the development of hybrid rice is discussed. Received: 3 January 1996 / Accepted: 17 May 1996  相似文献   

6.
Structural diversity and evolution of the Rf-1 locus in the genus Oryza   总被引:1,自引:0,他引:1  
The Rf-1 locus in rice is agriculturally important as it restores fertility in plants with BT-type cytoplasmic male sterility (CMS). The Rf-1 locus contains several duplicated copies of the gene responsible for restoration of fertility. We analyzed the genomic structure of the Rf-1 locus in the genus Oryza to clarify the structural diversity and evolution of the locus. We identified six genes (Rf-1A to Rf-1F) with homology to Rf-1 at this locus in Oryza species with an AA genome. The Rf-1 locus structures in the rice accessions examined were very complex and fell into at least six classification types. The nucleotide sequences of the duplicated genes and their flanking regions were highly conserved suggesting that the complex Rf-1 locus structures were produced by homologous recombination between the duplicated genes. The fact that complex Rf-1 locus structures were common to Oryza species that have evolved independently indicates that a duplication of the ancestral Rf-1 gene occurred early in rice evolution and that homologous recombination resulted in the diversification of Rf-1 locus structures. Additionally, the amino acid sequences of each duplicated gene were conserved between species. This suggests that the duplicated genes in the Rf-1 locus may have divergent functions and may act by controlling mitochondrial gene expression in rice as occurs in the restoration of CMS.  相似文献   

7.
8.
利用杂种优势提高作物产量时,生产杂交种的主要授粉控制系统是细胞质雄性不育及其恢复系统。在杂交品种的选育过程中,优良恢复系选育至关重要。为了高效并准确地鉴定选择恢复材料,同时更深入地研究恢复基因的作用机理,近年来植物细胞质雄性不育恢复基因分子标记研究受到了广泛重视。本文综述了主要农作物水稻、油菜、小麦、棉花和玉米等细胞质雄性不育类型恢复基因的定位和分子标记研究进展,并讨论了恢复基因的精确定位和分子标记鉴定在基因克隆和分子标记辅助选择育种中的意义和应用前景。  相似文献   

9.
利用杂种优势提高作物产量时, 生产杂交种的主要授粉控制系统是细胞质雄性不育及其恢复系统。在杂交品种的选育过程中, 优良恢复系选育至关重要。为了高效并准确地鉴定选择恢复材料, 同时更深入地研究恢复基因的作用机理, 近年来植物细胞质雄性不育恢复基因分子标记研究受到了广泛重视。本文综述了主要农作物水稻、油菜、小麦、棉花和玉米等细胞质雄性不育类型恢复基因的定位和分子标记研究进展, 并讨论了恢复基因的精确定位和分子标记鉴定在基因克隆和分子标记辅助选择育种中的意义和应用前景。  相似文献   

10.
段继强  杜光辉  李建永  梁雪妮  刘飞虎 《遗传》2008,30(11):1487-1498
摘要: 根据GenBank报道的双子叶植物线粒体atp6和atp9基因编码区保守序列设计简并引物, 通过PCR技术从苎麻细胞质雄性不育系、保持系和恢复系(简称“三系”) mtDNA中扩增目的基因片段, 发现所得序列开放阅读框虽不完整, 但与GenBank报道的其他植物线粒体atp6和atp9基因同源性分别高于94%和85%。采用DNA Walking步移法分别从3′端和5′端扩增两个基因片段的未知侧翼序列, 分离出完整的苎麻线粒体atp6和atp9基因, 包含了完整的开放阅读框。其中“三系”的atp6基因在mtDNA水平、转录和翻译调控水平、蛋白质水平上均无差异。不育系atp9基因在编码区3′端与保持系和恢复系相比存在若干个碱基的差异和缺失; RT-PCR分析还表明, 不育系atp9基因在现蕾期和盛花期的表达量很高。推测不育系atp9基因的结构变异和/或异常表达与苎麻细胞质雄性不育(CMS)的关系密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号