首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Skp2 is the substrate binding subunit of the SCFSkp2 ubiquitin ligase, which plays a key role in the regulation of cell cycle progression. The activity of Skp2 is regulated by the APCCdh1, which targets Skp2 for degradation in early G1 and prevent premature S phase entry. Overexpression of Skp2 leads to dysregulation of the cell cycle and is commonly observed in human cancers. We have previously shown that Skp2 is phosphorylated on Ser64 and Ser72 in vivo, and that these modifications regulate its stability. Recently, two studies have proposed a role for Ser72 phosphorylation in the cytosolic relocalization of Skp2 and in the assembly and activity of SCFSkp2 ubiquitin ligase complex. We have revisited this question and analyzed the impact of Ser72 phosphorylation site mutations on the biological activity and subcellular localization of Skp2. We show here that phosphorylation of Ser72 does not control Skp2 binding to Skp1 and Cul1, has no influence on SCFSkp2 ubiquitin ligase activity, and does not affect the subcellular localization of Skp2 in a panel of cell lines.  相似文献   

2.
3.
The cyclin-dependent kinase (CDK) inhibitor p27 is degraded in late G1 phase by the ubiquitin pathway, allowing CDK activity to drive cells into S phase. Ubiquitinylation of p27 requires its phosphorylation at Thr 187 (refs 3, 4) and subsequent recognition by S-phase kinase associated protein 2 (Skp2; refs 5-8), a member of the F-box family of proteins that associates with Skp1, Cul-1 and ROC1/Rbx1 to form an SCF ubiquitin ligase complex. However, in vitro ligation of p27 to ubiquitin could not be reconstituted by known purified components of the SCFSkp2 complex. Here we show that the missing factor is CDK subunit 1 (Cks1), which belongs to the highly conserved Suc1/Cks family of proteins that bind to some CDKs and phosphorylated proteins and are essential for cell-cycle progression. Human Cks1, but not other members of the family, reconstitutes ubiquitin ligation of p27 in a completely purified system, binds to Skp2 and greatly increases binding of T187-phosphorylated p27 to Skp2. Our results represent the first evidence that an SCF complex requires an accessory protein for activity as well as for binding to its phosphorylated substrate.  相似文献   

4.
The Skp2 oncoprotein belongs to the family of F-box proteins that function as substrate recognition factors for SCF (Skp1, cullin, F-box protein) E3 ubiquitin-ligase complexes. Binding of the substrate to the SCFSkp2 complex catalyzes the conjugation of ubiquitin molecules to the bound substrate, resulting in multi-ubiquitination and rapid degradation by the 26 S proteasome. Using Skp2 as bait in a yeast two-hybrid screen, we have identified UBP43 as a novel substrate for Skp2. UBP43 belongs to the family of ubiquitin isopeptidases and specifically cleaves ISG15, a ubiquitin-like molecule that is induced by cellular stresses, such as type 1 interferons (IFN), nephrotoxic damage, and bacterial infection. UBP43 was originally identified as an up-regulated gene in knock-in mice expressing an acute myelogenous leukemia fusion protein, AML1-ETO, as well as in melanoma cell lines treated with IFN-beta. The phenotype of UBP43 knockout mice includes shortened life span, hypersensitivity to IFN, and neuronal damage, suggesting that tight regulation of ISG15 conjugation is critical for normal cellular function. In this study, we demonstrate that UBP43 is ubiquitinated in vivo and accumulates in cells treated with proteasome inhibitors. We also show that Skp2 promotes UBP43 ubiquitination and degradation, resulting in higher levels of ISG15 conjugates. In Skp2-/- mouse cells, levels of UBP43 are consistently up-regulated, whereas levels of ISG15 conjugates are reduced. Our results demonstrate that the SCFSkp2 is involved in controlling UBP43 protein levels and may therefore play an important role in modulating type 1 IFN signaling.  相似文献   

5.
Western blotting coupled with immunoprecipitation showed that activin A treatment induced phosphorylation of Smad2 but not complex formation of Smad2/4 in human colon cancer-derived HT-29 cells. Because HT-29 cells expressed neither Smad4 mRNA nor Smad4 protein, it is suggested that deletion of Smad4 leads to a defect of formation of Smad2/4 complex upon activin A stimulation in HT-29 cells.  相似文献   

6.
F-box proteins are the substrate recognition subunits of SCF (Skp1, Cul1, F-box protein) ubiquitin ligase complexes. Skp2 is a nuclear F-box protein that targets the CDK inhibitor p27 for ubiquitin- and proteasome-dependent degradation. In G0 and during the G1 phase of the cell cycle, Skp2 is degraded via the APC/CCdh1 ubiquitin ligase to allow stabilization of p27 and inhibition of CDKs, facilitating the maintenance of the G0/G1 state. APC/CCdh1 binds Skp2 through an N-terminal domain (amino acids 46-94 in human Skp2). It has been shown that phosphorylation of Ser69 and Ser72 in this domain dissociates Skp2 from APC/C. More recently, it has instead been proposed that phosphorylation of Skp2 on Ser72 by Akt/PKB allows Skp2 binding to Skp1, promoting the assembly of an active SCFSkp2 ubiquitin ligase, and Skp2 relocalization/retention into the cytoplasm, promoting cell migration via an unknown mechanism. According to these reports, a Skp2 mutant in which Ser72 is substituted with Ala is unable to promote cell proliferation and loses its oncogenic potential. Given the contrasting reports, we revisited these results and conclude that phosphorylation of Skp2 on Ser72 does not control Skp2 binding to Skp1 and Cul1, has no influence on SCFSkp2 ubiquitin ligase activity, and does not affect the subcellular localization of Skp2.  相似文献   

7.
8.
DDB1, a subunit of the damaged-DNA binding protein DDB, has been shown to function also as an adaptor for Cul4A, a member of the cullin family of E3 ubiquitin ligase. The Cul4A-DDB1 complex remains associated with the COP9 signalosome, and that interaction is conserved from fission yeast to human. Studies with fission yeast suggested a role of the Pcu4-Ddb1-signalosome complex in the proteolysis of the replication inhibitor Spd1. Here we provide evidence that the function of replication inhibitor proteolysis is conserved in the mammalian DDB1-Cul4A-signalosome complex. We show that small interfering RNA-mediated knockdown of DDB1, CSN1 (a subunit of the signalosome), and Cul4A in mammalian cells causes an accumulation of p27Kip1. Moreover, expression of DDB1 reduces the level of p27Kip1 by increasing its decay rate. The DDB1-induced proteolysis of p27Kip1 requires signalosome and Cul4A, because DDB1 failed to increase the decay rate of p27Kip1 in cells deficient in CSN1 or Cul4A. Surprisingly, the DDB1-induced proteolysis of p27Kip1 also involves Skp2, an F-box protein that allows targeting of p27Kip1 for ubiquitination by the Skp1-Cul1-F-box complex. Moreover, we provide evidence for a physical association between Cul4A, DDB1, and Skp2. We speculate that the F-box protein Skp2, in addition to utilizing Cul1-Skp1, utilizes Cul4A-DDB1 to induce proteolysis of p27Kip1.  相似文献   

9.
10.
Proteolysis of cyclin-dependent kinase inhibitor p27 occurs predominantly in the late G1 phase of the cell cycle through a ubiquitin-mediated protein degradation pathway. Ubiquitination of p27 requires the SCFSkp2 ubiquitin ligase and Skp2 F-box binding protein Cks1. The mechanisms by which Skp2 recognizes Cks1 to ubiquitylate p27 remain obscure. Here we show that Asp-331 in the carboxyl terminus of Skp2 is required for its association with Cks1 and ubiquitination of p27. Mutation of Asp-331 to Ala disrupts the interaction between Skp2 and Cks1. Although Asp-331 mutation negates the ability of the Skp1-Cullin-F-box protein (SCF) complex to ubiquitylate p27, such a mutation has no effect on Skp2 self-ubiquitination. A conservative change from Asp to Glu at position 331 of Skp2 does not affect Skp2-Cks1 interaction. Our results revealed a unique requirement for a negatively charged residue in the carboxyl-terminal region of Skp2 in recognition of Cks1 and ubiquitination of p27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号