首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
Populations of the turret spider Atypoides riversi from eight central Californian sites were compared based on variation at ten allozyme loci. Multidimensional scaling of interpopulation genetic distances defined four population units (Coast Range, Sierran, Valley, Jenness Camp), corroborating the distinctness of Coast Range and Sierran populations indicated by a prior study. While the species status of these units has yet to be determined, Jenness Camp is the most likely to represent a new species, given its clear genetic uniqueness (two fixed allelic differences). Populations in all units were generally in Hardy–Weinberg equilibrium with no evidence of inbreeding, though variability was minimal (mean H o = 2.8%, mean P  = 15.4%). Reduced variability in these populations may be the result of repeated bottlenecks, environmental homogeneity, and/or directional selection. Interpopulation differentiation within units was significant in the absence of intervening forest habitat and was substantially less in its presence, indicating that gene flow is likely only when forest corridors exist. To foster preservation of the existing gene pool and enhance participation in it, management of the units of At. riversi should focus on maintaining as many populations in situ as possible and facilitating connections between them, while also creating or restoring habitat for potential colonization.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 27–37.  相似文献   

2.
The mountain yellow-legged frog Rana muscosa sensu lato , once abundant in the Sierra Nevada of California and Nevada, and the disjunct Transverse Ranges of southern California, has declined precipitously throughout its range, even though most of its habitat is protected. The species is now extinct in Nevada and reduced to tiny remnants in southern California, where as a distinct population segment, it is classified as Endangered. Introduced predators (trout), air pollution and an infectious disease (chytridiomycosis) threaten remaining populations. A Bayesian analysis of 1901 base pairs of mitochondrial DNA confirms the presence of two deeply divergent clades that come into near contact in the Sierra Nevada. Morphological studies of museum specimens and analysis of acoustic data show that the two major mtDNA clades are readily differentiated phenotypically. Accordingly, we recognize two species, Rana sierrae , in the northern and central Sierra Nevada, and R. muscosa , in the southern Sierra Nevada and southern California. Existing data indicate no range overlap. These results have important implications for the conservation of these two species as they illuminate a profound mismatch between the current delineation of the distinct population segments (southern California vs. Sierra Nevada) and actual species boundaries. For example, our study finds that remnant populations of R. muscosa exist in both the southern Sierra Nevada and the mountains of southern California, which may broaden options for management. In addition, despite the fact that only the southern California populations are listed as Endangered, surveys conducted since 1995 at 225 historic (1899–1994) localities from museum collections show that 93.3% ( n =146) of R. sierrae populations and 95.2% ( n =79) of R. muscosa populations are extinct. Evidence presented here underscores the need for revision of protected population status to include both species throughout their ranges.  相似文献   

3.
  • 1 Coastal Californian Pieris napi are facultatively bivoltine, with two seasonal phenotypes, whereas inland populations from the Inner Coast Ranges and Sierra Nevada are univoltine and monophenic.
  • 2 When reared under continuous light at 25d̀C both coastal and inland stocks produce about 50% diapause pupae, which give rise to vernal-phenotype adults. Non-diapause pupae of all stocks give rise to summer-phenotype adults, even though this phenotype does not exist in the wild in univoltine populations.
  • 3 Univoltinism, which implies developmental suppression of the summer phenotype, is interpreted as a derivative from multivoltinism and an adaptation to host plant phenology.
  相似文献   

4.
The historical biogeography of California’s taxa has been the focus of extensive research effort. The western pond turtle (Emys marmorata) is an example of a wide‐ranging taxon that spans several well‐known California diversity hotspots. Using a dataset comprised of one mitochondrial and five nuclear loci, we elucidate the major biogeographic patterns of the western pond turtle across the California landscape. By employing a combination of phylogenetic and network‐based approaches, we recovered a relatively ancient (c. 2–8 Ma) north/south split among populations of E. marmorata and find an area of intergradation centred in the Central Coast Ranges of California. In addition, discordant mitochondrial/nuclear genetic patterns suggest subsequent gene flow from northern populations and from San Joaquin Valley populations into the Central Coast Ranges after the Pliocene‐Pleistocene marine embayment of the Great Central Valley subsided. Our results emphasize the utility of nuclear DNA phylogeography for recovering the impact of relatively ancient biogeographic events, and suggest that the Central Coast Ranges of California have played a major role in the geographic structuring of the western pond turtle, and possibly other co‐distributed taxa.  相似文献   

5.
Antrodiaetus riversi is a dispersal‐limited, habitat‐specialized mygalomorph spider species endemic to mesic woodlands of northern and central California. Here, we build upon prior phylogeographic research using a much larger geographic sample and include additional nuclear genes, providing more detailed biogeographic insights throughout the range of this complex. Of particular interest is the uncovering of unexpected and replicated trans‐valley biogeographic patterns, where in two separate genetic clades western haplotypes in the California south Coast Ranges are phylogenetically closely related to eastern haplotypes from central and northern Sierran foothills. In both instances, these trans‐valley phylogenetic patterns are strongly supported by multiple genes. These western and eastern populations are currently separated by the Central Valley, a well‐recognized modern‐day and historical biogeographic barrier in California. For one clade, the directionality is clearly northeast to southwest, and all available evidence is consistent with a jump dispersal event estimated at 1.2–1.3 Ma. During this time period, paleogeographic data indicate that northern Sierran rivers emptied to the ocean in the south Coast Ranges, rather than at the San Francisco Bay. For the other trans‐valley clade genetic evidence is less conclusive regarding the mechanism and directionality of biogeographic exchange, although the estimated timeframe is similar (approximately 1.8 Ma). Despite the large number of biogeographic studies previously conducted in central California, to the best of our knowledge no prior studies have discussed or revealed a northern Sierran to south Coast Range biogeographic connection. This uniqueness may reflect the low‐dispersal biology of mygalomorph spiders, where ‘post‐event’ gene exchange rarely erases historical biogeographic signal.  相似文献   

6.
Five edaphically-restricted or -endemic butterflies, mostly associated with serpentine, are shown to be distributed in the western foothills of the Sierra Nevada in addition to their previously documented areas of occupancy in the California North Coast Ranges. Two species are absolutely limited by the edaphic restriction of their host plants, while the other three seemingly are not. The controversies concerning the origins of serpentine endemism in plants apply to butterflies as well. Long-term relictualism can presumably apply only at the metapopulation level, not the local population level, due to the frequency of fire in these habitats. Development and habitat-conversion trends pose a high risk to the long-term survival of these species in the Sierra Nevada.  相似文献   

7.
Aim The salamander Ensatina eschscholtzii Gray is a classic example of a ring species, or a species that has expanded around a central barrier to form a secondary contact characterized by species‐level divergence. In the original formulation of the ring species scenario, an explicit biogeographical model was proposed to account for the occurrence of intraspecific sympatry between two subspecies in southern California (the ‘southern closure’ model). Here we develop an alternative ring species model that is informed by the geomorphological development of the California Coast Ranges, and which situates the point of ring closure in the Monterey Bay region of central coastal California (the ‘Monterey closure’ model). Our study has two aims. The first is to use phylogenetic methods to evaluate the two competing biogeographical models. The second is to describe patterns of phylogeographical diversity throughout the range of the Ensatina complex, and to compare these patterns with previously published molecular systematic data. Location Western North America, with a focus on the state of California, USA. Methods We obtained mitochondrial DNA sequence data from 385 individuals from 224 populations. A phylogeny was inferred using Bayesian techniques, and the geographical distributions of haplotypes and clades were mapped. The two biogeographical ring species models were tested against our Bayesian topology, including the associated Bayesian 95% credible set of trees. Results High levels of phylogeographical diversity were revealed, especially in central coastal and northern California. Our Bayesian topology contradicts the Monterey closure model; however, 0.08% of the trees in our Bayesian 95% credible set are consistent with this model. In contrast, the classic ring species biogeographical model (the southern closure model) is consistent with our Bayesian topology, as were 99.92% of the trees in our 95% credible set. Main conclusions Our Bayesian phylogenetic analysis most strongly supports the classic ring species model, modified to accommodate an improved understanding of the complex geomorphological evolution of the California Coast Ranges. In addition, high levels of phylogeographical diversity in central and northern California were identified, which is consistent with the striking levels of allozymic differentiation reported previously from those regions.  相似文献   

8.
Andreakis N  Kooistra WH  Procaccini G 《Gene》2007,406(1-2):144-151
Eight polymorphic nuclear microsatellite loci were identified from the invasive Indo-Pacific Mediterranean strain of Asparagopsis taxiformis. Microsatellite markers were tested against a panel of specimens collected along the Italian (Elba, Naples) and Californian (Catalina Island) coasts, all belonging to the same mitochondrial lineage. In addition, we used Hawaiian specimens, belonging to a closely related mitochondrial lineage. The markers amplified in all of the specimens but failed consistently in thalli of two more distantly related mitochondrial lineages of A. taxiformis as well as in specimens belonging to the sister species Asparagopsis armata. Since haploid female individuals among the Mediterranean specimens contained cystocarps, genotyping was performed on supposedly haploid female specimens and supposedly diploid cystocarps separately. As expected, external allelic contribution was detected in the cystocarps. However, even after removal of these reproductive structures, gametophyte thalli exhibited patterns consisting of up to three alleles in all of the tested populations indicating polyploidy. An elevated number of distinct genotypes (up to 85%) were found per population, suggesting high intra-population variation. Results showed high genetic similarity between the two Mediterranean populations screened and lower similarity between these two and the Californian one within the same mitochondrial lineage. Lowest similarity was found between these three and the Hawaiian population belonging to the other related mitochondrial lineage 1.  相似文献   

9.
Since the late 1990s, molecular techniques have fuelled debate about the role of Pleistocene glacial cycles in structuring contemporary avian diversity in North America. The debate is still heated; however, there is widespread agreement that the Pleistocene glacial cycles forced the repeated contraction, fragmentation, and expansion of the North American biota. These demographic processes should leave genetic 'footprints' in modern descendants, suggesting that detailed population genetic studies of contemporary species provide the key to elucidating the impact of the late Quaternary (late Pleistocene-Holocene). We present an analysis of mitochondrial DNA (mtDNA) variation in the mountain chickadee (Poecile gambeli) in an attempt to examine the genetic evidence of the impact of the late Quaternary glacial cycles. Phylogenetic analyses reveal two strongly supported clades of P. gambeli: an Eastern Clade (Rocky Mountains and Great Basin) and a Western Clade (Sierra Nevada and Cascades). Post-glacial introgression is apparent between these two clades in the Mono Lake region of Central California. Within the Eastern Clade there is evidence of isolation-by-distance in the Rocky Mountain populations, and of limited gene flow into and around the Great Basin. Coalescent analysis of genetic variation in the Western Clade indicates that northern (Sierra Nevada/Cascades) and southern (Transverse/Peninsular Ranges) populations have been isolated and evolving independently for nearly 60,000 years.  相似文献   

10.
The California Floristic Province (CFP) is considered a global biodiversity hotspot because of its confluence of high species diversity across a wide range of threatened habitats. To understand how biodiversity hotspots such as the CFP maintain and generate diversity, we conducted a phylogeographic analysis of the flightless darkling beetle, Nyctoporis carinata, using multiple genetic markers. Analyses of both nuclear and mitochondrial loci revealed an east–west genetic break through the Transverse Ranges and high genetic diversity and isolation of the southern Sierra Nevada Mountains. Overall, the results obtained suggest that this species has a deep evolutionary history whose current distribution resulted from migration out of a glacial refugium in the southern Sierra Nevada via the Transverse Ranges. This finding is discussed in light of similar genetic patterns found in other taxa to develop a foundation for understanding the biodiversity patterns of this dynamic area. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 424–444.  相似文献   

11.
Knowledge of population genetic structure of tanoak (Lithocarpus densiflorus) is of interest to pathologists seeking natural variation in resistance to sudden oak death disease, to resource managers who need indications of conservation priorities in this species now threatened by the introduced pathogen (Phytophthora ramorum), and to biologists with interests in demographic processes that have shaped plant populations. We investigated population genetic structure using nuclear and chloroplast DNA (cpDNA) and inferred the effects of past population demographic processes and contemporary gene flow. Our cpDNA results revealed a strong pattern of differentiation of four regional groups (coastal California, southern Oregon, Klamath mountains, and Sierra Nevada). The chloroplast haplotype phylogeny suggests relatively deep divergence of Sierra Nevada and Klamath populations from those of coastal California and southern Oregon. A widespread coastal California haplotype may have resulted from multiple refugial sites during the Last Glacial Maximum or from rapid recolonization from few refugia. Analysis of nuclear microsatellites suggests two major groups: (1) central coastal California and (2) Sierra Nevada/Klamath/southern Oregon and an area of admixture in north coastal California. The low level of nuclear differentiation is likely to be due to pollen gene flow among populations during postglacial range expansion.  相似文献   

12.
Species with narrow environmental tolerances are often distributed within fragmented patches of suitable habitat, and dispersal among these subpopulations can be difficult to directly observe. Genetic data can help quantify gene flow between localities, which is especially important for vulnerable species with a disjunct range. The Shenandoah salamander (Plethodon shenandoah) is a federally endangered species known only from three mountaintops in Virginia, USA. To reconstruct the evolutionary history and population connectivity of this species, we generated both mitochondrial and nuclear data using sequence capture from individuals collected across all three mountaintops. Applying population and landscape genetic methods, we found strong population structure that was independent of geographic distance. Both the nuclear markers and mitochondrial genomes indicated a deep split between the most southern population and the genetically similar central and northern populations. Although there was some mitochondrial haplotype‐splitting between the central and northern populations, there was admixture in nuclear markers. This is indicative of either a recent split or current male‐biased dispersal among mountain isolates. Models of landscape resistance found that dispersal across north‐facing slopes at mid‐elevation levels best explain the observed genetic structure among populations. These unexpected results highlight the importance of incorporating landscape features in understanding and predicting the movement and fragmentation of this range‐restricted salamander species across space.  相似文献   

13.
Understanding the biotic consequences of Pleistocene range shifts and fragmentation remains a fundamental goal in historical biogeography and evolutionary biology. Here, we combine species distribution models (SDM) from the present and two late Quaternary time periods with multilocus genetic data (mitochondrial DNA and microsatellites) to evaluate the effect of climate‐induced habitat shifts on population genetic structure in the Large‐blotched Ensatina (Ensatina eschscholtzii klauberi), a plethodontid salamander endemic to middle and high‐elevation conifer forest in the Transverse and Peninsular Ranges of southern California and northern Baja California. A composite SDM representing the range through time predicts two disjunct refugia, one in southern California encompassing the core of the species range and the other in the Sierra San Pedro Mártir of northern Baja California at the southern limit of the species range. Based on our spatial model, we would expect a pattern of high connectivity among populations within the northern refugium and, conversely, a pattern of isolation due to long‐term persistence of the Sierra San Pedro Mártir population. Our genetic results are consistent with these predictions based on the hypothetical refugia in that (i) historical measures of population connectivity among stable areas are correlated with gene flow estimates; and (ii) there is strong geographical structure between separate refugia. These results provide evidence for the role of recent climatic change in shaping patterns of population persistence and connectivity within the Transverse and Peninsular Ranges, an evolutionary hotspot.  相似文献   

14.
California is home to both the native state-threatened Sierra Nevada red fox (Vulpes vulpes necator), which historically inhabited high elevations of the Sierra Nevada and Cascade mountains, and to multiple low-elevation red fox populations thought to be of exotic origin. During the past few decades the lowland populations have dramatically expanded their distribution, and possibly moved into the historic range of the native high-elevation fox. To determine whether the native red fox persists in its historic range in California, we compared mitochondrial cytochrome-b haplotypes of the only currently-known high-elevation population (n = 9 individuals) to samples from 3 modern lowland populations (n = 35) and historic (1911–1941) high-elevation (n = 22) and lowland (n = 7) populations. We found no significant population differentiation among the modern and historic high-elevation populations (average pairwise F ST = 0.06), but these populations differed substantially from all modern and historic lowland populations (average pairwise F ST = 0.52). Among lowland populations, the historic and modern Sacramento Valley populations were not significantly differentiated from one another (F ST = −0.06), but differed significantly from recently founded populations in the San Francisco Bay region and in southern California (average pairwise F ST = 0.42). Analysis of molecular variance indicated that 3 population groupings (mountain, Sacramento Valley, and other lowland regions) explained 45% of molecular variance (F CT = 0.45) whereas only 4.5% of the variance was partitioned among populations within these groupings (F SC = 0.08). These findings provide strong evidence that the native Sierra Nevada red fox has persisted in northern California. However, all nine samples from this population had the same haplotype, suggesting that several historic haplotypes may have become lost. Unidentified barriers have apparently prevented gene flow from the Sacramento Valley population to other eastern or southern populations in California. Future studies involving nuclear markers are needed to assess the origin of the Sierra Nevada red fox and to quantify levels of nuclear gene flow.  相似文献   

15.
Mitochondrial DNA under siege in avian phylogeography   总被引:16,自引:1,他引:15  
Mitochondrial DNA (mtDNA) has been the workhorse of research in phylogeography for almost two decades. However, concerns with basing evolutionary interpretations on mtDNA results alone have been voiced since the inception of such studies. Recently, some authors have suggested that the potential problems with mtDNA are so great that inferences about population structure and species limits are unwarranted unless corroborated by other evidence, usually in the form of nuclear gene data. Here we review the relative merits of mitochondrial and nuclear phylogeographical studies, using birds as an exemplar class of organisms. A review of population demographic and genetic theory indicates that mitochondrial and nuclear phylogeographical results ought to concur for both geographically unstructured populations and for populations that have long histories of isolation. However, a relatively common occurrence will be shallow, but geographically structured mtDNA trees--without nuclear gene corroboration--for populations with relatively shorter periods of isolation. This is expected because of the longer coalescence times of nuclear genes (approximately four times that of mtDNA); such cases do not contradict the mtDNA inference of recent isolation and evolutionary divergence. Rather, the nuclear markers are more lagging indicators of changes in population structure. A review of the recent literature on birds reveals the existence of relatively few cases in which nuclear markers contradict mitochondrial markers in a fashion not consistent with coalescent theory. Preliminary information from nuclear genes suggests that mtDNA patterns will prove to be robust indicators of patterns of population history and species limits. At equilibrium, mitochondrial loci are generally a more sensitive indicator of population structure than are nuclear loci, and mitochondrial estimates of F(ST)-like statistics are generally expected to exceed nuclear ones. Hence, invoking behavioural or ecological explanations of such differences is not parsimonious. Nuclear genes will prove important for quantitative estimates of the depths of haplotype trees, rates of population growth and values of gene flow.  相似文献   

16.
Global amphibian declines suggest a major shift in the amount and quality of habitat for these sensitive taxa. Many species that were once widespread are now experiencing declines either in part of or across their historic range. The northern leopard frog (Rana [Lithobates] pipiens] has undergone significant declines particularly in the western United States and Canada. Leopard frog population losses in Nevada are largely due to habitat fragmentation and the introduction of nonnative fish, amphibian, and plant species. Only two populations remain in the Truckee and Carson River watersheds of western Nevada which represents the western boundary of this species range. We used sequence data for an 812 base pair fragment of the mitochondrial NADH dehydrogenase 1 (ND1) gene to support a native origin for western Nevada populations. All frogs had a single haplotype (W07) from the distinct western North America ND1 haplotype clade. Data from seven polymorphic microsatellite loci show that Truckee and Carson River populations are highly differentiated from each other and from leopard frogs collected from eastern Nevada sites. Lack of gene flow among and distinct color morphs among the western Nevada populations likely predates the current geographical isolation. Comparisons with other peripheral L. pipiens populations show western Nevada populations have similar levels of gene diversity despite their contemporary isolation (H(E) 0.411, 0.482). Restoration of leopard frog populations in these watersheds will be challenging given well-entrenched nonnative bullfrog populations and major changes to the riparian zone over the past century. Declines of once common amphibian species has become a major conservation concern. Contemporary isolation of populations on a species range periphery such as the leopard frog populations in the Truckee and Carson rivers further exacerbate extirpation risk as these populations are likely to have fewer genetic resources to adaptively respond to rapidly changing biotic and abiotic environments.  相似文献   

17.
18.
Active management is essential to the survival of many threatened species globally. Captive breeding programmes can play an important role in facilitating the supplementation, translocation and reintroduction of wild populations. However, understanding the genetic dynamics within and among wild and captive populations is crucial to the planning and implementation of ex situ management, as adaptive potential is, in part, driven by genetic diversity. Here, we use 14 microsatellite loci and mitochondrial Control Region sequence to examine the population genetics of both wild populations and captive colonies of the endangered warru (the MacDonnell Ranges race of the black-footed rock-wallaby Petrogale lateralis) in central Australia, to understand how historical evolutionary processes have shaped current diversity and ensure effective ex situ management. Whilst microsatellite data reveal significant contemporary differentiation amongst remnant warru populations, evidence of contemporary dispersal and relatively weak isolation by distance, as well as a lack of phylogeographic structure suggests historical connectivity. Genetic diversity within current captive populations is lower than in the wild source populations. Based on our genetic data and ecological observations, we predict outbreeding depression is unlikely and hence make the recommendation that captive populations be managed as one genetic group. This will increase genetic diversity within the captive population and as a result increase the adaptive potential of reintroduced populations. We also identify a new site in the Musgrave Ranges which contains unique alleles but also connectivity with a population 6 km away. This novel genetic diversity could be used as a future source for supplementation.  相似文献   

19.
Phenotypic and genetic variation are present in all species, but lineages differ in how variation is partitioned among populations. Examining phenotypic clustering and genetic structure within a phylogeographic framework can clarify which biological processes have contributed to extant biodiversity in a given lineage. Here, we investigate genetic and phenotypic variation among populations and subspecies within a Neotropical songbird complex, the White‐collared Seedeater (Sporophila torqueola) of Central America and Mexico. We combine measurements of morphology and plumage patterning with thousands of nuclear loci derived from ultraconserved elements (UCEs) and mitochondrial DNA to evaluate population differentiation. We find deep levels of molecular divergence between two S. torqueola lineages that are phenotypically diagnosable: One corresponds to S. t. torqueola along the Pacific coast of Mexico, and the other includes S. t. morelleti and S. t. sharpei from the Gulf Coast of Mexico and Central America. Surprisingly, these two lineages are strongly differentiated in both nuclear and mitochondrial markers, and each is more closely related to other Sporophila species than to one another. We infer low levels of gene flow between these two groups based on demographic models, suggesting multiple independent evolutionary lineages within S. torqueola have been obscured by coarse‐scale similarity in plumage patterning. These findings improve our understanding of the biogeographic history of this lineage, which includes multiple dispersal events out of South America and across the Isthmus of Tehuantepec into Mesoamerica. Finally, the phenotypic and genetic distinctiveness of the range‐restricted S. t. torqueola highlights the Pacific Coast of Mexico as an important region of endemism and conservation priority.  相似文献   

20.
The Eurasian range of the tench distribution is subdivided into deeply divergent Western and Eastern phylogroups evidenced by nuclear and mitochondrial DNA sequence markers. A broad zone of overlap exists in central and western Europe, suggesting post-glacial contact with limited hybridisation. We conducted a population genetic test of this indication that the two phylogroups may represent distinct species. We analysed variation at introns of nuclear genes, microsatellites, allozymes and mitochondrial DNA in populations from two postglacial lakes within the contact zone in Germany. The test is based on the expectation that in the presence of strong barriers to reproduction, a hybrid population will show genome-wide associations among alleles and genotypes from each phylogroup even after hundreds of generations of interbreeding. In contrast to this expectation, no consistent significant deviations from linkage and Hardy–Weinberg equilibria were found. Samples from both lakes did show significant disequilibria but they were limited to individual loci and were not concordant between populations, and were not robust to the method used. The single consistent association can be attributed to physical linkage between two microsatellite loci. Thus, results of our study support the hypothesis of free interbreeding between the two phylogroups of tench. Therefore, although the phylogroups may be considered as separate phylogenetic species, the present data suggest that they are a single species under the biological species concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号