首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The growth responses of seedlings of Amphipterygium adstringens, Caesalpinia eriostachys, and C. platyloba, species associated with undisturbed parts of the tropical deciduous forest in México, and Apoplanesia paniculata and Heliocarpus pallidus, two gap-requiring pioneer species, were determined under contrasting light conditions in a growth chamber experiment. The high (400 mol m–2 s–1) and low (80 mol m–2 s–1) light treatments correspond to the light available in a medium size gap and underneath the vegetation canopy in the deciduous forest during the rainy season, respectively. Following four destructive harvests the biomass production, relative growth rate, root/shoot ratio, specific leaf area, net assimilation rate, leaf area ratio and light dependency were determined for all species. In the high light treatment all species achieved higher relative growth rates and net assimilation rates than when growing at low light intensity. However, the two pioneer species showed the highest light dependency and were the species more affected by the low light treatment in biomass production. The two Caesalpinia species showed similar growth responses, but C. platyloba was the most shade tolerant species. Plastic adjustments in terms of the specific leaf area were more evident in the two pioneer species.  相似文献   

2.
In a shadehouse experiment we tested the effects of light, nutrients and ectomycorrhizal fungi (EMF) on the growth of Vatica albiramis van Slooten (Dipterocarpaceae) seedlings. We hypothesised that it is more advantageous for plants to form connections with EMF and to trade carbon for nutrients with EMF under high light than low light. The relationship between seedling growth and the proportion of ectomycorrhizal root tips was expected as positive in high light and as negative in low light. Light conditions simulated the forest understory (low; 3% full sunlight), a small gap (medium; 11%) and a large gap (high; 33%) and a fully factorial combination of nutrients (F?/+) and ectomycorrhizal colonization (EMF?/+) treatments were applied within light conditions. The application of EMF and nutrients did significantly alter seedling growth across the range of forest floor light conditions, however the key hypothesis was rejected as seedling growth under low light was not affected by increased EMF colonization of root tips (light:EMF colonization χ2?=?2.97, p?=?0.23). In addition, the lack of difference in morphotype abundance across light conditions indicated that light changes may not favour the association to specific EMF in seedlings of this particular dipterocarp species. Our results suggest that antagonistic (non-beneficial to the plant) effects due to ectomycorrhizal colonization under a light constrained environment may not affect seedling growth of Vatica albiramis.  相似文献   

3.
4.
Most general circulation models predict that most tropical forests will experience lower and less frequent rainfall in future as a result of climate change, which may reduce the capacity of fungal pathogens to drive density-dependent tree mortality. This is potentially significant because fungal pathogens are thought to play a key role in promoting and structuring plant diversity in tropical forests through the Janzen-Connell mechanism. Therefore, we hypothesize that the drying of tropical forests will negatively impact species coexistence. To test one prediction of this hypothesis, we imposed experimental watering regimes on the seedlings of a tropical tree, Pleradenophora longicuspis, and measured mortality induced by fungal pathogens under shade house conditions. The frequency of watering had a strong impact on survival. Seedlings watered daily experienced significantly higher mortality than those watered every three or every six days, while increasing the volume of water applied also led to increased mortality, although this relationship was less pronounced. These results suggest that the capacity of fungal pathogens to drive density-dependent mortality may be reduced in drier climates and when rainfall is less frequent, with potential implications for the diversity enhancing Janzen-Connell mechanism.  相似文献   

5.
Acclimation to periodic high‐light stress was studied in tree seedlings from a neotropical forest. Seedlings of several pioneer and late‐succession species were cultivated under simulated tree‐fall gap conditions; they were placed under frames covered with shade cloth with apertures of different widths that permitted defined periods of daily leaf exposure to direct sunlight. During direct sun exposure, all plants exhibited a marked reversible decline in potential photosystem II (PSII) efficiency, determined by means of the ratio of variable to maximum Chl a fluorescence (Fv/Fm). The decline in Fv/Fm under full sunlight was much stronger in late‐succession than in pioneer species. For each gap size, all species exhibited a similar degree of de‐epoxidation of violaxanthin in direct sunlight and similar pool sizes of xanthophyll cycle pigments. Pool sizes increased with increasing gap size. Pioneer plants possessed high levels of β‐carotene that also increased with gap size, whereas α‐carotene decreased. In contrast to late‐succession plants, pioneer plants were capable of adjusting their Chl a/b ratio to a high value in wide gaps. The content of extractable UV‐B‐absorbing compounds was highest in the plants acclimated to large gaps and did not depend on the successional status of the plants. The results demonstrate a better performance of pioneer species under high‐light conditions as compared with late‐succession plants, manifested by reduced photoinhibition of PSII in pioneer species. This was not related to increased pool size and turnover of xanthophyll cycle pigments, nor to higher contents of UV‐B‐absorbing substances. High β‐carotene levels and increased Chl a/b ratios, i.e. reduced size of the Chl a and b binding antennae, may contribute to photoprotection in pioneer species.  相似文献   

6.
7.
An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2%) and high light (20%) were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics.  相似文献   

8.
We evaluated (1) the responses of two co-occurring tropical tree species, Heliocarpuspallidus and Caesalpiniaeriostachys, to changes in light, (2) the ability of these species to search for and exploit a fertilized soil patch, (3) the relationship between the capacity to forage for a fertilized patch and the capacity to respond to changes in light availability and (4) how the relationship between light and nutrient acquisition influenced the competitive interactions between these species. Plants of the two species were exposed to a factorial combination of high (H) and low (L) light intensity and fertilized (+Fp) and unfertilized (−Fp) nutrient patches for 50 days. Half of the plants from H were then transferred to L (HL treatment), and half of the plants from L were transferred to H (LH). The remaining plants were kept in their original light condition and grown for another 50 days. Plants were grown in these light and patch treatments alone (one plant per pot) and in interspecific competition (one plant per species resulting in two plants per pot). Both species exploited fertilized patches by increasing root biomass and length in the patch. This enhanced plant productivity and growth rate mainly under LH and HH conditions for Heliocarpus and the HH condition for Caesalpinia). When plants in the HH light environment were grown with an unfertilized patch, plant biomass and relative growth rates (RGRs) were even lower than␣under the LL light environment [(HH–Fp)<LL]. However, the combined activity of shoot and roots when above- and below-ground resources were temporally and spatially heterogeneous influenced plant productivity and growth rate. The benefit from light increase (LH) was reduced when grown with an unfertilized patch. Larger reductions in root biomass, length and density in the patch, and in plant biomass and RGR, were exhibited by Heliocarpus than by Caesalpinia. These results suggest a close relationship between root foraging and light capture, where the benefit of the exploitation of the patch will be reflected in whole-plant benefit, if enough light is captured above-ground. In addition, the results suggest a change in the expected plant responses to light due to heterogeneity in soil nutrients, even though the fertilized patch was only a small proportion of the total soil volume. Leaf characteristics such as specific leaf area responded only to light conditions and not to patchily distributed nutrients. Root characteristics responded more strongly to nutrient heterogeneity. Competition modified the pattern of foraging under both high- and low-light conditions in Heliocarpus by 50 days, and the ability to forage for a fertilized patch under LL after 100 days of growth for Caesalpinia. Even though plant growth and productivity are greatly reduced under low-light conditions (HL and LL), competition modifies the ability of species to forage for a rich patch (especially for the fast-growing species Heliocarpus). Received: 24 November 1997 / Accepted: 15 June 1998  相似文献   

9.
1 We examined the abundance and distribution patterns of pioneer seeds in the soil seed bank, and of pioneer seedlings in 53 recently formed gaps, in a 50‐ha forest dynamics plot on Barro Colorado Island (BCI), Panama. The aim was to assess the importance of dispersal limitation (failure of seeds to arrive at all sites suitable for their germination) and establishment limitation (failure of seeds having reached a site to germinate successfully and establish as seedlings) in determining patterns of gap occupancy.
2 The abundance of seeds in the soil seed bank was strongly negatively correlated with seed size, but was not correlated with the abundance of reproductive‐sized adult trees in the plot. In contrast, the abundance of pioneer seedlings > 10 cm height in natural gaps was strongly correlated with adult abundance, but was not correlated with seed size.
3 Seedlings were non‐randomly distributed among gaps, but seedling abundance was not directly related to gap size, and there was no evidence of partitioning of the light environment of gaps by small seedlings. Large differences in growth and mortality rates among species were observed after 1 year, and this may result in the gap size partitioning previously found in saplings of the same species.
4 Seedlings of most species, particularly those with large seeds, were relatively more abundant than expected in gaps close to their conspecific adults. Proximity to reproductives, and by inference dispersal limitation, therefore exerts some effect on seedling distribution. None the less, large differences between seed and seedling abundances for some species, and low seedling occupancy rates in some gaps close to adult conspecifics, suggest that seedling emergence probabilities and species‐specific establishment requirements may also be important determinants of local abundance.  相似文献   

10.
11.
Dispersal distance is understudied although the evolution of dispersal distance affects the distribution of genetic diversity through space. Using the two-spotted spider mite, Tetranychus urticae, we tested the conditions under which dispersal distance could evolve. To this aim, we performed artificial selection based on dispersal distance by choosing 40 individuals (out of 150) that settled furthest from the home patch (high dispersal, HDIS) and 40 individuals that remained close to the home patch (low dispersal, LDIS) with three replicates per treatment. We did not observe a response to selection nor a difference between treatments in life-history traits (fecundity, survival, longevity, and sex-ratio) after ten generations of selection. However, we show that heritability for dispersal distance depends on density. Heritability for dispersal distance was low and non-significant when using the same density as the artificial selection experiments while heritability becomes significant at a lower density. Furthermore, we show that maternal effects may have influenced the dispersal behaviour of the mites. Our results suggest primarily that selection did not work because high density and maternal effects induced phenotypic plasticity for dispersal distance. Density and maternal effects may affect the evolution of dispersal distance and should be incorporated into future theoretical and empirical studies.  相似文献   

12.
13.
The recruitment of a dioecious bird-dispersed tree, the hollyIlex aquifolium (Aquifoliaceae), was studied consideringthe stages of fruit removal by birds, seed rain, post-dispersal seed predation,seed germination and seedling survival. The main objective was to test theeffect of different microhabitats within a beech forest on recruitment stages.Migrant thrushes were the main dispersers of this tree whose fruit crops wereentirely removed during two study years. Seed rain was greatest beneath hollytrees regardless of their sex and lowest in the open sites. Post-dispersal seedpredation was examined by two experiments and did not differ betweenmicrohabitats despite its quantitative importance (about 70%). Seedlingemergence, which probably corresponded to seeds from several cohorts, wasgreater beneath trees than in open sites and the density of second-yr to 5cm seedlings depended on the presence-absence of ungulateherbivores and litter. While the former had a detrimental effect, the latterhada beneficial effect on seedling abundance. Seedling survival showed nosignificant variations between microhabitats but depended on seedling densityinsome microhabitats (holly, beech). Finally, the initial seed arrival seemed todetermine microhabitat suitability for holly seedling establishment. However,under heavy browsing the density of seedlings may be strongly reduced leadingtomicrohabitat homogeneity for holly seedling establishment.  相似文献   

14.
The potential for mycorrhizae to influence the diversity and structuring of plant communities depends on whether their affinities and effects differ across a suite of potential host species. In order to assess this potential for a tropical forest community in Panama, we conducted three reciprocal inoculation experiments using seedlings from six native tree species. Seeds were germinated in sterile soil and then exposed to arbuscular mycorrhizal fungi in current association with naturally infected roots from adults of either the same or different species growing in intact forest. The tree species represent a range of life histories, including early successional pioneers, a persistent understory species, and emergent species, typical of mature forest. Collectively, these experiments show: (i) the seedlings of small-seeded pioneer species were more dependent on mycorrhizal inocula for initial survival and growth; (ii) although mycorrhizal fungi from all inocula were able to colonize the roots of all host species, the inoculum potential (the infectivity of an inoculum of a given concentration) and root colonization varied depending on the identity of the host seedling and the source of the inoculum; and (iii) different mycorrhizal fungal inocula also produced differences in growth depending on the host species. These differences indicate that host–mycorrhizal fungal interactions in tropical forests are characterized by greater complexity than has previously been demonstrated, and suggest that tropical mycorrhizal fungal communities have the potential to differentially influence seedling recruitment among host species and thereby affect community composition.  相似文献   

15.
Several demographic factors can produce family structured patches within natural plant populations, particularly limited seed and pollen dispersal and small effective density. In this paper, we used computer simulations to examine how seed dispersal, density, and spatial distribution of adult trees and seedlings can explain the spatial genetic structure (SGS) of natural regeneration after a single reproductive event in a small population. We then illustrated the results of our simulations using genetic (isozymes and chloroplast microsatellites) and demographic experimental data from an Abies alba (silver fir) intensive study plot located in the Southern French Alps (Mont Ventoux). Simulations showed that the structuring effect of limited dispersal on seedling SGS can largely be counterbalanced by high effective density or a clumped spatial distribution of adult trees. In addition, the clumping of natural regeneration far from adult trees, which is common in temperate forest communities where gap dynamics are predominant, further decreases SGS intensity. Contrary to our simulation results, low adult tree density, aggregated spatial distribution of seedlings, and limited seed dispersal did not generate a significant SGS in our A. alba experimental plot. Although some level of long distance pollen and seed flow could explain this lack of SGS, our experimental data confirm the role of spatial aggregation (both in adult trees and in seedlings far from adult trees) in reducing SGS in natural populations.  相似文献   

16.
High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40?% ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.  相似文献   

17.
18.
Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature.  相似文献   

19.
1.  Dispersal of individuals between habitat patches depends on both the propensity to emigrate from a patch and the ability to survive inter-patch movement. Environmental factors and individual characteristics have been shown to influence dispersal rates but separating the effects of emigration and dispersal mortality on dispersal can often be difficult. In this study, we use a soil mite laboratory system to investigate factors affecting emigration and dispersal mortality.
2.  We tested the movement of different age groups in two-patch systems with different inter-patch distances. Differences in immigration among age groups were primarily driven by differences in emigration but dispersal mortality was greater for some groups. Immigration declined with increasing inter-patch distance, which was due to increasing dispersal mortality and decreasing emigration.
3.  In a second experiment, we compared the dispersal of recently matured males and females and tested the impact of food availability during the developmental period on their dispersal. Dispersal was found to be male biased but there was no significant sex bias in dispersal mortality. There was some evidence that food availability could affect emigration and dispersal mortality.
4.  These results demonstrate that both emigration and dispersal mortality can be affected by factors such as individual age and resource availability. Understanding these effects is likely to be important for predicting the fitness costs and population consequences of dispersal.  相似文献   

20.
Background: There is limited understanding about bird dispersal behaviour and seedling distribution of endangered tree species in patchy environments, although these processes are important for plant species persistence.

Aims: We tested how patch features affected bird behaviour and seed dispersal, and thus seedling distribution of the endangered Chinese yew tree (Taxus chinensis).

Methods: In the present study, we combined field data of bird dispersal behaviour and GIS-based information to elucidate the influence of spatial features of habitat patches on bird dispersal behaviour, and the resulting effects on the seedling distribution of the endangered Chinese yew in two patchy habitats.

Results: Our results showed that the only seed source patch could attract eight bird species for dispersal at the two sites. Post-foraging movements of bird dispersers was strongly related to both topography and the relative locations of habitat patches. Yew seedlings aggregated only at the seed source and bamboo recruitment patches, which was affect by both the spatial distribution of recruitment patches and patch use by dispersers.

Conclusions: Our results emphasise that bamboo patches in both patchy environments provide the necessary conditions for germination of yew seeds, and the post-foraging behaviour of dispersers determines seed deposited in these patches. Our study highlights the importance of the dispersal behaviour of frugivorous birds in the successful regeneration and colonisation of yew populations in patchy habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号