首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gynodioecy is a breeding system characterized by the co-occurrence of hermaphrodite and female individuals, generally as the result of nuclear–cytoplasmic interactions. The question remains whether the genetic factors controlling gynodioecy are maintained in species over long evolutionary timescales by balancing selection or are continually arising and being replaced in epidemic sweeps. If balancing selection maintains these factors, then neutral cytoplasmic diversity should be greater in gynodioecious than hermaphroditic species. In contrast, epidemic sweeps of factors controlling gynodioecy should decrease cytoplasmic diversity in gynodioecious relative to hermaphroditic species. We took a comparative approach in which we sequenced two mitochondrial genes, cytochrome b (cob) and cytochrome oxidase (cox1), for multiple populations of several hermaphroditic, gynodioecious, and dioecious species in the genus Silene. Breeding system was predictive of polymorphism. Gynodioecious species harbor many old haplotypes while hermaphroditic and dioecious species have little to no nucleotide diversity. The genealogical structure of neither gene departed from neutral expectations. Taken together, our results suggest that balancing selection acts on cytoplasmic male-sterility factors in several gynodioecious species in the genus.  相似文献   

2.
In gynodioecious species, in which hermaphroditic and female plants co-occur, the maintenance of sexual polymorphism relies on the genetic determination of sex and on the relative fitness of the different phenotypes. Flower production, components of male fitness (pollen quantity and pollen quality) and female fitness (fruit and seed set) were measured in gynodioecious Beta vulgaris spp. maritima, in which sex is determined by interactions between cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. The results suggested that (i) female had a marginal advantage over hermaphrodites in terms of flower production only, (ii) restored CMS hermaphrodites (carrying both CMS genes and nuclear restorers) suffered a slight decrease in fruit production compared to non-CMS hermaphrodites and (iii) restored CMS hermaphrodites were poor pollen producers compared to non-CMS hermaphrodites, probably as a consequence of complex determination of restoration. These observations potentially have important consequences for the conditions of maintenance of sexual polymorphism in B. vulgaris and are discussed in the light of existing theory on evolutionary dynamics of gynodioecy.  相似文献   

3.
Abstract.— Models allowing the coexistence of females and hermaphrodites in gynodioecious populations assume a simple genetic system of sex determination, a seed fitness advantage of females (compensation), and a negative pleiotropic effect of nuclear sex-determining genes on fitness (cost of restoration). In Lobelia siphilitica , sex is determined by both mitochondrial genes causing cytoplasmic male sterility (CMS) and nuclear genes that restore fertility when present with specific CMS haplotypes (nuclear restorers). I tested for a cost of restoration in L. siphilitica by measuring restored hermaphrodites for five fitness components and estimating the number of nuclear restorers by crosses with females carrying CMS1 and CMS2. A cost of restoration appears as a significant negative coefficient (B) in the regression model explaining fitness. I found that hermaphrodites carrying more nuclear restorer genes for CMS2 (or restorer genes of greater effect) have lower pollen viability (B =– 1.08, P = 0.001). This pollen viability cost of restoration in L. siphilitica supports the theoretical prediction that negative pleiotropic effects of restorers will exist in populations of gynodioecious species containing females. The existence of such a cost supports the view that gynodioecy can be a stable breeding system in nature.  相似文献   

4.
Nuclear-cytoplasmic gynodioecy is a breeding system of plants in which females and hermaphrodites co-occur in populations, and gender is jointly determined by cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Persistent polymorphism at both CMS and nuclear-restorer loci is necessary to maintain this breeding system. Theoretical models have explained how nuclear-cytoplasmic gynodioecy can be stable for certain assumptions. However, recent advances in our understanding of the genetics, population biology, and molecular mechanisms of sex determination in nuclear-cytoplasmic gynodioecious species suggest the utility of new models with different underlying assumptions. In this article, we examine different negative pleiotropic fitness effects of nuclear restorers (costs of restoration) using genetic and population assumptions based on recent literature. Specifically, we model populations with two CMS types and separate nuclear restorer loci for each CMS type. Under these assumptions, both overdominance for fitness and frequency-dependent selection at nuclear-restorer loci can support nuclear-cytoplasmic gynodioecy. Costs of restoration can be either dependent or independent of the cytoplasmic background. Seed fitness costs are more vulnerable to fixation of CMS types than pollen costs. Survivorship costs are effective at maintaining polymorphism even when total reproductive effects are low. Overall, our models display differences in the stability of nuclear-cytoplasmic gynodioecy and predicted population sex ratios that should be informative to researchers studying gynodioecy in the wild.  相似文献   

5.
Many flowering plant species exhibit a variety of distinct sexual morphs, the two most common cases being the co-occurrence of females and males (dioecy) or the co-occurrence of hermaphrodites and females (gynodioecy). In this study, we compared DNA sequence variability of the three genomes (nuclear, mitochondrial and chloroplastic) of a gynodioecious species, Silene nutans, with that of a closely related dioecious species, Silene otites. In the light of theoretical models, we expect cytoplasmic diversity to differ between the two species due to the selective dynamics that acts on cytoplasmic genomes in gynodioecious species: under an epidemic scenario, the gynodioecious species is expected to exhibit lower cytoplasmic diversity than the dioecious species, while the opposite is expected in the case of balancing selection maintaining sterility cytoplasms in the gynodioecious species. We found no difference between the species for nuclear gene diversity, but, for the cytoplasmic loci, the gynodioecious S. nutans had more haplotypes, and higher nucleotide diversity, than the dioecious relative, S. otites, even though the latter has a relatively high rate of mitochondrial synonymous substitutions, and therefore presumably a higher mutation rate. Therefore, as the mitochondrial mutation rate cannot account for the higher cytoplasmic diversity found in S. nutans, our findings support the hypothesis that gynodioecy in S. nutans has been maintained by balancing selection rather than by epidemic-like dynamics.  相似文献   

6.
Gynodioecy is a breeding system where both hermaphroditic and female individuals coexist within plant populations. This dimorphism is the result of a genomic interaction between maternally inherited cytoplasmic male sterility (CMS) genes and bi-parentally inherited nuclear male fertility restorers. As opposed to other gynodioecious species, where every cytoplasm seems to be associated with male sterility, wild beet Beta vulgaris ssp. maritima exhibits a minority of sterilizing cytoplasms among numerous non-sterilizing ones. Many studies on population genetics have explored the molecular diversity of different CMS cytoplasms, but questions remain concerning their evolutionary dynamics. In this paper we report one of the first investigations on phylogenetic relationships between CMS and non-CMS lineages. We investigated the phylogenetic relationships between 35 individuals exhibiting different mitochondrial haplotypes. Relying on the high linkage disequilibrium between chloroplastic and mitochondrial genomes, we chose to analyse the nucleotide sequence diversity of three chloroplastic fragments (trnK intron, trnD-trnT and trnL-trnF intergenic spacers). Nucleotide diversity appeared to be low, suggesting a recent bottleneck during the evolutionary history of B. vulgaris ssp. maritima. Statistical parsimony analyses revealed a star-like genealogy and showed that sterilizing haplotypes all belong to different lineages derived from an ancestral non-sterilizing cytoplasm. These results suggest a rapid evolution of male sterility in this taxon. The emergence of gynodioecy in wild beet is confronted with theoretical expectations, describing either gynodioecy dynamics as the maintenance of CMS factors through balancing selection or as a constant turnover of new CMSs.  相似文献   

7.
Variation among individuals in reproductive success is advocated as a major process driving evolution of sexual polymorphisms in plants, such as gynodioecy where females and hermaphrodites coexist. In gynodioecious Beta vulgaris ssp. maritima, sex determination involves cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Both restored CMS and non-CMS hermaphrodites co-occur. Genotype-specific differences in male fitness are theoretically expected to explain the maintenance of cytonuclear polymorphism. Using genotypic information on seedlings and flowering plants within two metapopulations, we investigated whether male fecundity was influenced by ecological, phenotypic and genetic factors, while taking into account the shape and scale of pollen dispersal. Along with spatially restricted pollen flow, we showed that male fecundity was affected by flowering synchrony, investment in reproduction, pollen production and cytoplasmic identity of potential fathers. Siring success of non-CMS hermaphrodites was higher than that of restored CMS hermaphrodites. However, the magnitude of the difference in fecundity depended on the likelihood of carrying restorer alleles for non-CMS hermaphrodites. Our results suggest the occurrence of a cost of silent restorers, a condition supported by scarce empirical evidence, but theoretically required to maintain a stable sexual polymorphism in gynodioecious species.  相似文献   

8.
Maia F. Bailey  Lynda F. Delph 《Oikos》2007,116(10):1609-1617
Gynodioecious plant species, species in which individuals are females or hermaphrodites, are ideal systems for studying connections between genetics, ecology, and long‐term evolutionary changes because sex determination can be complex, involving cytoplasmic and/or nuclear genes, and sex ratio is often variable across landscapes. Field data are needed to evaluate the many theories concerning this breeding system. In order to facilitate the gathering of relevant data, this paper introduces the four types of gynodiocy (nuclear, nuclear‐cytoplasmic and stochastic gynodioecy plus subdioecy), describes example species and expected patterns, discusses the various forces that drive the evolution of female frequencies, and gives concrete advice on where to start collecting data for different systems. For species in which females are relatively rare, we recommend reciprocal crosses to determine if sex‐determination is nuclear or nuclear‐cytoplasmic along with a search for correlations between female frequencies and ecological factors. For species in which females are common and sex ratios are highly variable, we recommend looking at female offspring sex ratios to determine if females are primarily produced in ephemeral epidemics. In the course of this discussion, we argue that the majority of natural gynodioecious species will have complex sex determination in which multiple cytoplasmic male sterility (CMS) genes interact with multiple nuclear restorers of fertility. Sex‐ratio evolution in such species will be primarily influenced by fitness differences among hermaphrodites (costs of restoration) and less influenced by fitness differences between the sexes (compensation). Metapopulation dynamics alone may explain population sex ratios of species in which females are associated with marginal environments or hybrid zones; however, we feel that in most cases equilibrium forces within populations and metapopulation dynamics among populations each explain portions of the sex‐ratio pattern.  相似文献   

9.
In many gynodioecious species, sex determination involves both cytoplasmic male‐sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.  相似文献   

10.
A novel cytoplasmic male sterility (CMS) conferred by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its restorer-of-fertility gene (Rfd1) was previously reported in radish (Raphanus sativus L.). Its inheritance of fertility restoration and profiles of mitochondrial DNA (mtDNA)-based molecular markers were reported to be different from those of Ogura CMS, the first reported CMS in radish. The complete mitochondrial genome sequence (239,186 bp; GenBank accession No. KC193578) of DCGMS mitotype is reported in this study. Thirty-four protein-coding genes and three ribosomal RNA genes were identified. Comparative analysis of a mitochondrial genome sequence of DCGMS and previously reported complete sequences of normal and Ogura CMS mitotypes revealed various recombined structures of seventeen syntenic sequence blocks. Short-repeat sequences were identified in almost all junctions between syntenic sequence blocks. Phylogenetic analysis of three radish mitotypes showed that DCGMS was more closely related to the normal mitotype than to the Ogura mitotype. A single 1,551-bp unique region was identified in DCGMS mtDNA sequences and a novel chimeric gene, designated orf463, consisting of 128-bp partial sequences of cox1 gene and 1,261-bp unidentified sequences were found in the unique region. No other genes with a chimeric structure, a major feature of most characterized CMS-associated genes in other plant species, were found in rearranged junctions of syntenic sequence blocks. Like other known CMS-associated mitochondrial genes, the predicted gene product of orf463 contained 12 transmembrane domains. Thus, this gene product might be integrated into the mitochondrial membrane. In total, the results indicate that orf463 is likely to be a casual factor for CMS induction in radish containing the DCGMS cytoplasm.  相似文献   

11.
In gynodioecious plant populations, sex determination often involves both cytoplasmic male-sterility (CMS) genes and specific nuclear genes that restore male function. How gynodioecy is maintained under the joint dynamics of CMS and restorer genes remains controversial. Although many theoretical models deal with interactions between CMS genes and restorer genes with sexual phenotypes and predict changes in their frequencies, it is difficult to observe the frequencies because no molecular markers have been established for either CMS or restorer genes in well-studied gynodioecious plants. This is the first report of the frequency of a CMS gene determined using a molecular marker in natural populations of a gynodioecious plant. Using a set of CMS gene-specific polymerase chain reaction primers, we compared female and CMS gene frequencies in 18 natural populations of Raphanus sativus. Female frequency was relatively low, ranging from 0 to 0.21. In contrast, the CMS gene frequency was highly variable among populations, ranging from 0 to 1. Estimated restorer gene frequency seemed less variable than observed CMS gene frequency, probably due to higher gene flow than in the CMS gene. Genetic drift may play a role in maintaining high variability of the CMS gene, although other possibilities are not excluded.  相似文献   

12.
In many gynodioecious species, cytoplasmic male sterility genes (CMS) and nuclear male fertility restorers (Rf) jointly determine whether a plant is female or hermaphrodite. Equilibrium models of cytonuclear gynodioecy, which describe the effect of natural selection within populations on the sex ratio, predict that the frequency of females in a population will primarily depend on the cost of male fertility restoration, a negative pleiotropic effect of Rf alleles on hermaphrodite fitness. Specifically, when the cost of restoration is higher, the frequency of females at equilibrium is predicted to be higher. To test this prediction, we estimated variation in the cost of restoration across 26 populations of Lobelia siphilitica, a species in which Rf alleles can have negative pleiotropic effects on pollen viability. We found that L. siphilitica populations with many females were more likely to contain hermaphrodites with low pollen viability. This is consistent with the prediction that the cost of restoration is a key determinant of variation in female frequency. Our results suggest that equilibrium models can explain variation in sex ratio among natural populations of gynodioecious species.  相似文献   

13.
14.
Gynodioecy, the co‐occurrence of females and hermaphrodites, is often due to conflicting interactions between cytoplasmic male sterility genes and nuclear restorers. Although gynodioecy often occurs in self‐compatible species, the effect of self‐pollination, inbreeding depression, and pollen limitation acting differently on females and hermaphrodites remains poorly known in the case of nuclear‐cytoplasmic gynodioecy (NCG). In this study, we model NCG in an infinite population and we study the effect of selfing rate, inbreeding depression, and pollen limitation on the maintenance of gynodioecy and on sex ratios at equilibrium. We found that selfing and inbreeding depression have a strong impact, which depends on whether restorer cost acts on male or female fitness. When cost affects male fitness, the strength of cost has no effect, whereas selfing and inbreeding depression only impact gynodioecy by modifying the value of the female advantage. When cost affects female fitness, selfing facilitates NCG and reduces the role of strength of the cost, even when no inbreeding depression occurs, whereas inbreeding depression globally restricts the maintenance of the polymorphism. Finally, we found that pollen limitation could additionally strongly modify the dynamic of gynodioecy. We discuss our findings in the light of empirical data available in gynodioecious species.  相似文献   

15.
Chen J  Guan R  Chang S  Du T  Zhang H  Xing H 《PloS one》2011,6(3):e17662
Cytoplasmic male sterility (CMS) has been identified in numerous plant species. Brassica napus CMS plants, such as Polima (pol), MI, and Shaan 2A, have been identified independently by different researchers with different materials in conventional breeding processes. How this kind of CMS emerges is unclear. Here, we report the mitochondrial genome sequence of the prevalent mitotype in the most widely used pol-CMS line, which has a length of 223,412 bp and encodes 34 proteins, 3 ribosomal RNAs, and 18 tRNAs, including two near identical copies of trnH. Of these 55 genes, 48 were found to be identical to their equivalents in the "nap" cytoplasm. The nap mitotype carries only one copy of trnH, and the sequences of five of the six remaining genes are highly similar to their equivalents in the pol mitotype. Forty-four open reading frames (ORFs) with unknown function were detected, including two unique to the pol mitotype (orf122 and orf132). At least five rearrangement events are required to account for the structural differences between the pol and nap sequences. The CMS-related orf224 neighboring region (~5 kb) rearranged twice. PCR profiling based on mitotype-specific primer pairs showed that both mitotypes are present in B. napus cultivars. Quantitative PCR showed that the pol cytoplasm consists mainly of the pol mitotype, and the nap mitotype is the main genome of nap cytoplasm. Large variation in the copy number ratio of mitotypes was found, even among cultivars sharing the same cytoplasm. The coexistence of mitochondrial mitotypes and substoichiometric shifting can explain the emergence of CMS in B. napus.  相似文献   

16.
Dufaÿ M  Touzet P  Maurice S  Cuguen J 《Heredity》2007,99(3):349-356
Gynodioecy is the co-occurrence of females and hermaphrodites in populations. It is usually due to the combined action of cytoplasmic male sterility (CMS) genes and nuclear genes that restore male fertility. According to previous theoretical studies, it is very difficult to explain the maintenance of gynodioecy with CMS and male-fertile cytotypes, although it has been observed in some species. However, only very specific situations have been investigated so far. We present a model to investigate the conditions that promote the maintenance of this breeding system in the case of an outcrossed species when CMS and male-fertile (non-CMS) cytotypes are present in an infinite panmictic population. We show that the type of cost of restoration strongly affects the conditions for stable maintenance of gynodioecy. Stable nuclear-cytoplasmic gynodioecy requires a female advantage, which is a classical condition for gynodioecy, but also a cost of CMS for female fitness, which had been rarely investigated. A cost of restoration is also needed, which could affect either pollen or seeds. Finally, we found that gynodioecy was attainable for a large set of parameter values, including low differences in fitness among genotypes and phenotypes. Our theoretical predictions are compared with previous theoretical work and with results of empirical studies on various gynodioecious species.  相似文献   

17.
The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited   总被引:22,自引:0,他引:22  
Budar F  Touzet P  De Paepe R 《Genetica》2003,117(1):3-16
Cytoplasmic male sterility (CMS) in plants is a classical example of genomic conflict, opposing maternally-inherited cytoplasmic genes (mitochondrial genes in most cases), which induce male sterility, and nuclear genes, which restore male fertility. In natural populations, this type of sex control leads to gynodioecy, that is, the co-occurrence of female and hermaphroditic individuals within a population. According to theoretical models, two conditions may maintain male sterility in a natural population: (1) female advantage (female plants are reproductively more successful than hermaphrodites on account of their global seed production); (2) the counter-selection of nuclear fertility restorers when the corresponding male-sterility-inducing cytoplasm is lacking. In this review, we re-examine the model of nuclear-mitochondrial conflict in the light of recent experimental results from naturally occurring CMS, alloplasmic CMS (appearing after interspecific crosses resulting from the association of nuclear and cytoplasmic genomes from different species), and CMS plants obtained in the laboratory and carrying mitochondrial mutations. We raise new hypotheses and discuss experimental models that would take physiological interactions between cytoplasmic and nuclear genomes into account.  相似文献   

18.
Laporte V  Cuguen J  Couvet D 《Genetics》2000,154(1):447-458
Equations are derived for the effective sizes of gynodioecious populations with respect to both nuclear and cytoplasmic genes (N(ec) and N(en), respectively). Compared to hermaphroditism, gynodioecy generally reduces effective population sizes for both kinds of loci to an extent depending on the frequency of females, the sex determination system, and the selfing rate of hermaphrodites. This reduction is due to fitness differences between the sexes and is highly influenced by the mode of inheritance of this fitness. In absence of selfing, nuclear gynodioecy results in a reduction of N(ec) that depends strongly on the dominance of male sterility alleles, while N(en) remains equal to the census number (N). With cytonuclear gynodioecy, both cytoplasmic and nuclear effective sizes are reduced, and at the extreme, dioecy results in the minimum N(ec) values and either minimum or maximum N(en) values (for low or high frequency of females, respectively). When selfing occurs, gynodioecy either increases or decreases N(en) as compared to hermaphroditism with the same selfing rate of hermaphrodites. Unexpectedly, N(ec) also varies with the selfing rate. Thus the genetic sex-determination system appears as a major factor for the nuclear and cytoplasmic genetic diversities of gynodioecious species.  相似文献   

19.
In gynodioecious species, females and hermaphrodites coexist and the genetics of sex determination is usually nuclear cytoplasmic. Maintaining nuclear-cytoplasmic gynodioecy requires polymorphism for the feminizing genes (contained in the mitochondria) and the genes that restore male fertility (contained in the nucleus). This complex polymorphism depends, in part, on there being negative pleiotropic effects (i.e. costs) of the nuclear restorer alleles. Here, we combine information from theoretical studies and studies on the molecular action of restorer alleles in crops to interpret the probable costs of such alleles, and suggest how various aspects of the theoretical models could be tested. In doing so, we highlight how crops can be used to address evolutionary questions about the maintenance of nuclear-cytoplasmic gynodioecy.  相似文献   

20.
Laporte V  Viard F  Bena G  Valero M  Cuguen J 《Genetics》2001,157(4):1699-1710
We have analyzed the spatial distribution of the sex phenotypes and of mitochondrial, chloroplast, and nuclear markers within two gynodioecious populations of Beta vulgaris ssp. maritima. Within both populations, sexual phenotype variation is controlled mainly by the cytoplasmic genotype, although in one study population a joint polymorphism of cytonuclear factors is clearly involved. In spite of contrasts in the ecology (mainly due to different habitats), a clear common feature in both populations is the highly patchy distribution of cytoplasmic haplotypes, contrasting with the wide distribution of nuclear diversity. This high contrast between cytoplasmic vs. nuclear spatial structure may have important consequences for the maintenance of gynodioecy. It provides opportunities for differential selection since nuclear restorer alleles are expected to be selected for in the presence of their specific cytoplasmic male sterile (CMS) type, but to be neutral (or selected against if there is a cost of restoration) in the absence of their CMS type. Selective processes in such a cytonuclear landscape may explain the polymorphism we observed at restorer loci for two CMS types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号