首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
As a result of the reassessment of the A-bomb dosimetry, new (DS86) doses were calculated in 1986. In this paper, site-specific estimates of cancer mortality in the years 1950-1985, based on these new doses, are compared with those using the T65DR doses. The subjects of the study are 75,991 members of the Life Span Study sample for whom DS86 doses have been calculated. This reevaluation of the exposures does not change the list of radiation-related cancers. Most differences in dose response between Hiroshima and Nagasaki are no longer significant with the DS86 doses. The dose-response curve is closer to linear with the DS86 than the T65DR doses even for leukemia in the entire dose range, though, statistically, many other models cannot be excluded. However, in the low-dose range, the risk of leukemia remains nonlinear. Assuming a linear model at an RBE of 1, and using organ-absorbed doses, the risk coefficients derived from the two dosimetries are very similar, whereas those based on shielded kerma are about 40% higher with the new dosimetry. If RBE values larger than 1 are assumed, the disparity between the two dosimetries increases because the neutron dose is much greater in the T65DR. At an RBE of 10, for the five specific cancers, i.e., female breast, colon, leukemia, lung, and stomach, the increase in excess number of deaths per 10(4) PYSv under the DS86 varies from 12% (colon) to 133% (female breast). The magnitude of the effects of such modifiers of radiation-induced cancer as age at time of bomb and sex do not differ between the two dose systems.  相似文献   

2.
Chromosome data pertaining to blood samples from 1,703 survivors of the Hiroshima and Nagasaki A-bombs, were utilized and different models for chromosome aberration dose response investigated. Models applied included those linear or linear-quadratic in equivalent dose. Models in which neutron and gamma doses were treated separately (LQ-L model) were also used, which included either the use of a low-dose limiting value for the relative biological effectiveness (RBE) of neutrons of R(0)=70+/-10 or an RBE value of R(1)=15+/-5 at 1 Gy. The use of R(1) incorporates the assumption that it is much better known than R(0), with much less associated uncertainty. In addition, error-reducing transformations were included which were found to result in a 50% reduction of the standard error associated with one of the model fit parameters which is associated with the proportion of cells with at least one aberration, at 1 Gy gamma dose. Several justifiable modifications to the DS86 doses according to recent nuclear retrospective dosimetry measurements were also investigated. Gamma-dose modifications were based on published thermoluminescence measurements of quartz samples from Hiroshima and on a tentative reduction for Nagasaki factory worker candidates by a factor of 0.6. Neutron doses in Hiroshima were modified to become consistent with recent fast neutron activation data based on copper samples. The applied dose modifications result in an increase in non-linearity of the dose-response curve for Hiroshima, and a corresponding decrease in that for Nagasaki, an effect found to be most pronounced for the LQ-L models investigated. As a result the difference in the dose-response curves observed for both cities based on DS86 doses, is somewhat reduced but cannot be entirely explained by the dose modifications applied. The extent to which the neutrons contribute to chromosome aberration induction in Hiroshima depends significantly on the model used. The LQ-L model including an R(1) value of 15 at 1 Gy which is recommended here, would predict between 10% and 20% of the observed chromosome aberrations to be due to neutrons, at all doses. Because of the good agreement between DS86 predictions and the results of retrospective gamma and neutron dosimetry, the modifications applied here to DS86 doses are relatively small. Consequently, the choices of model and RBE values were found to be the major factors dominating the interpretation of the chromosome data for Hiroshima and Nagasaki, with the dose modifications resulting in a smaller influence.  相似文献   

3.
While it is recognized that neutrons contributed to the excess cancer incidence and mortality among the atomic bomb survivors in Hiroshima, there is no possibility to deduce the magnitude of this contribution from the data. This remains true even if the neutron doses in the dosimetry system DS86 are corrected upwards in line with recent neutron activation measurements. In spite of this fact, important information can be obtained in the form of an inverse relation of the risk coefficients for γ-rays and neutrons. Such an interrelation must apply because the observed excess incidence or mortality is made up of a γ-ray and a neutron component; increased attribution to neutrons decreases the attribution to photons. Computations with the uncorrected and the corrected DS86 are performed for the mortality and the incidence of solid tumors combined. They refer to doses up to 2 Gy and employ the constant relative risk model and a linear-quadratic dose dependence with variable ratio – the neutron relative biological effectiveness (RBE) at low doses – of the linear component for neutrons and γ-rays. In line with past analyses, no quadratic component is obtained with the uncorrected DS86, but it is seen, even in these calculations, that the assumption of increased neutron RBEs does not translate into proportional increases of the risk coefficients of neutrons, because it leads to substantially reduced risk estimates for γ-rays. Calculations with the corrected dosimetry bring out this reciprocity even more clearly. High values of the neutron RBE reduce – in line with recent suggestions by Rossi and Zaider – the risk estimates for γ-rays substantially. Even a purely quadratic dose relation for γ-rays is consistent with the data; it requires no major increase of the nominal risk coefficients for neutrons over the currently assumed values. The cancer data from Hiroshima can still provide `prudent' risk estimates for photons, but with the corrected DS86, they do not prove that there is a linear component in the dose dependence for photons. Received: 20 January 1997 / Accepted in revised form: 14 March 1997  相似文献   

4.
This paper investigates the quantitative relationship of ionizing radiation to the occurrence of posterior lenticular opacities among the survivors of the atomic bombings of Hiroshima and Nagasaki suggested by the DS86 dosimetry system. DS86 doses are available for 1983 (93.4%) of the 2124 atomic bomb survivors analyzed in 1982. The DS86 kerma neutron component for Hiroshima survivors is much smaller than its comparable T65DR component, but still 4.2-fold higher (0.38 Gy at 6 Gy) than that in Nagasaki (0.09 Gy at 6 Gy). Thus, if the eye is especially sensitive to neutrons, there may yet be some useful information on their effects, particularly in Hiroshima. The dose-response relationship has been evaluated as a function of the separately estimated gamma-ray and neutron doses. Among several different dose-response models without and with two thresholds, we have selected as the best model the one with the smallest x2 or the largest log likelihood value associated with the goodness of fit. The best fit is a linear gamma-linear neutron relationship which assumes different thresholds for the two types of radiation. Both gamma and neutron regression coefficients for the best fitting model are positive and highly significant for the estimated DS86 eye organ dose.  相似文献   

5.
The Radiation Effects Research Foundation has recently implemented a new dosimetry system, DS02, to replace the previous system, DS86. This paper assesses the effect of the change on risk estimates for radiation-related solid cancer and leukemia mortality. The changes in dose estimates were smaller than many had anticipated, with the primary systematic change being an increase of about 10% in gamma-ray estimates for both cities. In particular, an anticipated large increase of the neutron component in Hiroshima for low-dose survivors did not materialize. However, DS02 improves on DS86 in many details, including the specifics of the radiation released by the bombs and the effects of shielding by structures and terrain. The data used here extend the last reported follow-up for solid cancers by 3 years, with a total of 10,085 deaths, and extends the follow-up for leukemia by 10 years, with a total of 296 deaths. For both solid cancer and leukemia, estimated age-time patterns and sex difference are virtually unchanged by the dosimetry revision. The estimates of solid-cancer radiation risk per sievert and the curvilinear dose response for leukemia are both decreased by about 8% by the dosimetry revision, due to the increase in the gamma-ray dose estimates. The apparent shape of the dose response is virtually unchanged by the dosimetry revision, but for solid cancers, the additional 3 years of follow-up has some effect. In particular, there is for the first time a statistically significant upward curvature for solid cancer on the restricted dose range 0-2 Sv. However, the low-dose slope of a linear-quadratic fit to that dose range should probably not be relied on for risk estimation, since that is substantially smaller than the linear slopes on ranges 0-1 Sv, 0-0.5 Sv, and 0- 0.25 Sv. Although it was anticipated that the new dosimetry system might reduce some apparent dose overestimates for Nagasaki factory workers, this did not materialize, and factory workers have significantly lower risk estimates. Whether or not one makes allowance for this, there is no statistically significant city difference in the estimated cancer risk.  相似文献   

6.
This report presents a reanalysis of the Hiroshima and Nagasaki data on severe epilation as an acute radiation effect using both the new DS86 and the old T65D dosimetries. The focus of the report is on several aspects of the data which have previously been examined by Jablon et al (ABCC TR 12-70, 1970) and Gilbert and Ohara [Radiat. Res. 100, 124-138 (1984)]. The report examines the uniformity of epilation response across shielding category, across sex and age, and in terms of interactions between city, sex, age, and shielding category; it also investigates the apparent relative biological effectiveness (RBE) of neutrons in the DS86 dose compared with the T65D dose, using both within- and between-city information. In addition the report discusses evidence for nonlinearity in epilation response. The epilation response function exhibits nonlinearity in terms of both a marked increase in slope at about 0.75 Gy, and then, beginning at about 2.5 Gy, a leveling off and eventual decrease in response. The principal conclusions of the report are as follows. The use of the DS86 dosimetry rather than T65D increases the apparent RBE of neutrons compared with gamma dose from approximately 5 to 10. At these values of RBE the slope of the dose response, in a middle range from 0.75-2.5 Gy, is about 165% greater using DS86 than T65D. With respect to the interactions of sex, city, and shielding method, the size and significance of virtually all nonuniformities in epilation response seem using T65D are also evident with DS86. Additionally it seems difficult to find any evidence that DS86 is an improved predictor of epilation response over T65D. Finally, the fact that the nonlinearity in dose response and apparent actual downturn in epilation occurrence rate at the high end of dose is more striking with DS86 than with T65D is found to be due primarily to the common practice of truncating all T65D doses to 600 rad.  相似文献   

7.
In the absence of epidemiological information on the effects of neutrons, their cancer mortality risk coefficient is currently taken as the product of two low-dose extrapolations: the nominal risk coefficient for photons and the presumed maximum relative biological effectiveness of neutrons. This approach is unnecessary. Since linearity in dose is assumed for neutrons at low to moderate effect levels, the risk coefficient can be derived in terms of the excess risk from epidemiological observations at an intermediate dose of gamma rays and an assumed value, R(1), of the neutron RBE relative to this reference dose of gamma rays. Application of this procedure to the A-bomb data requires accounting for the effect of the neutron dose component, which, according to the current dosimetry system, DS86, amounts on average to 11 mGy in the two cities at a total dose of 1 Gy. With R(1) tentatively set to 20 or 50, it is concluded that the neutrons have caused 18% or 35%, respectively, of the total effect at 1 Gy. The excess relative risk (ERR) for neutrons then lies between 8 per Gy and 16 per Gy. Translating these values into risk coefficients in terms of the effective dose, E, requires accounting for the gamma-ray component produced by the neutron field in the human body, which will require a separate analysis. The risk estimate for neutrons will remain essentially unaffected by the current reassessment of the neutron doses in Hiroshima, because the doses are unlikely to change much at the reference dose of 1 Gy.  相似文献   

8.
The RBEs of high-energy neutrons given in 9 or 12 fractions for cervical spinal cord injury in rhesus monkeys was determined using photons at 2.2 Gy per fraction as the reference radiation. Because the dose-response functions were not parallel, the RBE was not constant but rather increased with dose or, equivalently, with the probability of myelopathy. This required the development of a novel method of determining the RBE versus level of response. The RBE is presented as a function of probability of myelopathy from 0.1 to 99%. At a 50% incidence of myelopathy, the RBE (+/- 1 SE) was 5.22 +/- 0.15. A difference in the histopathology of lesions induced by photon and neutron treatments was observed.  相似文献   

9.
While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.  相似文献   

10.
In the spring of 1986 the Radiation Effects Research Foundation (RERF) received a new atomic bomb dosimetry system. This report presents the comparisons of leukemia and nonleukemia cancer mortality risk estimates under the old and new dosimetries. In terms of total kerma (essentially whole-body gamma plus neutron exposure), risk estimates for both classes of cancer are 75-85% higher with the new dosimetry. This and other summary comparisons allow for possible nonlinearity at high estimated doses. Changes are also considered in relation to organ doses and assumptions about the relative biological effectiveness (RBE) of neutrons. Without regard to RBE, the risk estimates for total organ dose are essentially unchanged by the dosimetry revision. However, with increasing assumed values of RBE, the estimated low-LET risk decreases much less rapidly under the new dosimetry, due to the smaller neutron component. Thus at an assumed constant RBE of 10, for example, the effect of the dosimetry revision is to increase organ dose risk estimates, relative to those based on the old dosimetry, by 30% for nonleukemia and 80% for leukemia. At an RBE of 20 these increases are 72 and 136%, respectively. A number of other issues are discussed. The city difference in dose is no longer statistically significant, even at an RBE of one. Estimation of RBE is even less feasible with new dosimetry. There is substantial question of the linearity in dose response, in the sense of a leveling off at higher doses. Finally, some indication is given of how risks estimated from this dosimetry and the current data may compare to widely used estimates based largely on the RERF data with the previous dosimetry.  相似文献   

11.
A study was made of induction of mutations, resistant to 6-thioguanine (TGr), and reproductive death of Chinese hamster cells after irradiation by fission-spectrum fast neutrons (mean energy of 0.75 MeV) with doses of 10-130 cGy. A high relative biological effectiveness (RBE) of fast neutrons was shown. The maximum RBE values (13-16) were within the dose range inducing minimum mutagenic and lethal effects. RBE decreased with the dose increase. Inspite of high mutagenic effectiveness of neutrons, estimated according to TGr mutation frequency per cell per dose unit, their relative mutagenic effectiveness, estimated per cell per one lethal event, did not substantially differ from that of X-radiation.  相似文献   

12.
A further study on the response of the mouse kidney to d(4)-Be neutrons (EN = 2.3 MeV) is described. The results confirm and augment the work published previously by Stewart et al. [Br. J. Radiol. 57, 1009-1021 (1984)]; the present paper includes the data from a "top-up" design of experiment which extends the measurements of neutron RBE (relative to 240 kVp X rays) down to X-ray doses of 0.75 Gy per fraction. The mean RBE for these neutrons increases from 5.8 to 7.3 as X-ray dose per fraction decreases from 3.0 to 1.5 Gy in the kidney. This agrees with the predictions from the linear quadratic (LQ) model, based on the renal response to X-ray doses above 4 Gy per fraction. The mean RBE estimate from a single dose group at 0.75 Gy per fraction of X rays is, however, 3.9. This is below the LQ prediction and may indicate increasing X-ray sensitivity at low doses. Data from this study and from those published previously have been used to determine more accurately the shape of the underlying response to d(4)-Be neutrons; an alpha/beta ratio of 20.5 +/- 3.7 Gy was found. The best value of alpha/beta for X rays determined from these experiments was 3.04 +/- 0.35 Gy, in agreement with previous values.  相似文献   

13.
The effectiveness of radon-daughter inhalation and irradiation with fission neutrons and gamma rays in the induction of lung carcinomas in Sprague-Dawley rats at low doses is compared. Earlier reports which compared radon-daughter inhalations and neutron irradiations over a wider range of doses were based on dosimetry for the radon-daughter inhalations which has recently been found to be faulty. In the present analysis, low-dose experiments were designed to derive revised equivalence ratios between radon-daughter exposures, and fission neutron or gamma irradiations. The equivalence is approximately 15 working level months (WLM) of radon daughters to 10 mGy of neutrons (the earlier value was 30 WLM to 10 mGy). The relative biological effectiveness (RBE) of neutrons is 50 or more at a gamma-ray dose of 1 Gy. In these experiments with low doses and exposures, the lifetime incidences can be estimated from the raw incidences, while the derivation of the time dependence of the prevalence is essential for the estimation of RBE values and equivalence ratios.  相似文献   

14.
Data from Argonne National Laboratory on lung cancer in 15,975 mice with acute and fractionated exposures to gamma rays and neutrons are analyzed with a biologically motivated model with two rate-limiting steps and clonal expansion. Fractionation effects and effects of radiation quality can be explained well by the estimated kinetic parameters. Both an initiating and a promoting action of neutrons and gamma rays are suggested. While for gamma rays the initiating event is described well with a linear dose-rate dependence, for neutrons a nonlinear term is needed, with less effectiveness at higher dose rates. For the initiating event, the neutron RBE compared to gamma rays is about 10 when the dose rate during each fraction is low. For higher dose rates this RBE decreases strongly. The estimated lifetime relative risk for radiation-induced lung cancers from 1 Gy of acute gamma-ray exposure at an age of 110 days is 1.27 for male mice and 1.53 for female mice. For doses less than 1 Gy, the effectiveness of fractionated exposure to gamma rays compared to acute exposure is between 0.4 and 0.7 in both sexes. For lifetime relative risk, the RBE from acute neutrons at low doses is estimated at about 10 relative to acute gamma-ray exposure. It decreases strongly with dose. For fractionated neutrons, it is lower, down to about 4 for male mice.  相似文献   

15.
A previous analysis of the solid cancer mortality data for 1950-1990 from the Japanese life-span study of the A-bomb survivors has assessed the solid cancer risk coefficients for gamma-rays in terms of the low dose risk coefficient ERR/Gy, i.e. the initial slope of the ERR vs. dose relation, and also in terms of the more precisely estimated intermediate dose risk coefficient, ERR(D1)/D1, for a reference dose, D1, which was chosen to be 1 Gy. The computations were performed for tentatively assumed values 20-50 of the neutron RBE against the reference dose and in terms of organ-averaged doses, rather than the traditionally applied colon doses. The resulting risk estimate for a dose of 1 Gy was about half as large as the most recent UNSCEAR estimate. The present assessment repeats the earlier analysis with two major extensions. It parallels computations based on organ-average doses with computations based on organ-specific doses and it updates the previous results by using the cancer mortality data for 1950-1997 which have recently been made available. With an assumed neutron RBE of 35, the resulting intermediate dose estimate of the lifetime attributable risk (LAR) for solid cancer mortality for a working population (ages 25-65 years) is 0.059/Gy with the attained-age model, and 0.044/Gy with the age-at-exposure model. For a population of all ages, 0.055/Gy is obtained with the attained-age model and 0.073/Gy with the age-at-exposure model. These values are up to about 20% higher than those obtained in the previous analysis with the 1950-1990 data. However, considerably more curvature in the dose-effect relation is now supported by the computations. A dose and dose-rate reduction factor DDREF=2 is now much more in line with the data than before. With this factor the LAR for a working population is--averaged over the age-at-exposure and the age-attained model--equal to 0.026/Gy. This is only half as large as the current ICRP estimate which is also based on the assumption DDREF=2.  相似文献   

16.
Relative biological effectiveness (RBE) of 252Cf, with respect to 192Ir, has been determined at the low dose rates commonly used in interstitial and intracavitary therapy. The biological criterion was growth reduction in Vicia faba bean roots. Two varieties of Vicia faba were used. For Vicia faba Sutton's seeds, an RBE of 5.7 to 6.6 was obtained for 252Cf Dn + gamma doses of 0.5 to 0.2 Gy respectively and at a Dn + gamma dose rate of 0.11 Gy-1. The gamma contribution D gamma/Dn + gamma at the level of the root tipes was 0.35 and the derived RBE of the neutron emission of 252Cf was then 8.2 to 9.7. For Vicia faba Be1B and in the same irradiation conditions, an RBE of 5.1 to 6.2 was obtained for the total (n + gamma) 252Cf emission and for Dn + gamma doses of 0.4 to 0.2 Gy respectively. These values lead to an RBE of 7.4 to 9.0 for the neutron emission of 252Cf. For Vicia faba BelB, but for another source arrangement (Dn + gamma dose rate of 0.13 Gy . h-1 for 252Cf), an RBE of 5.6 to 7.5 was obtained for the total (n + gamma) emission of 252Cf and for Dn + gamma doses of 0.4 to 0.1 Gy respectively. The gamma contribution (D gamma/Dn + gamma) at the level of the root tips was 0.42, and the derived RBE of the neutron emission of 252Cf was then 8.9-12.3.  相似文献   

17.
The effect of low doses of 240 kVp X rays or of 3 MeV neutrons has been investigated using skin reactions on mouse feet as the biological system. Eight or nine repeated small doses of radiation were used, followed by graded "top-up" doses to bring the reactions into a detectable range. By comparing dose-response curves, the RBE has been determined for neutron doses per fraction ranging from 0.25-1.0 Gy. The data are consistent with a limiting RBE of between 7 and 10 at very low doses. A review of other published RBE values for low doses per fraction shows a wide range of RBEs . Very few studies show a plateau value for the RBE. These findings are more consistent with dose-response data that fit a linear-quadratic model than with a multitarget single-hit model.  相似文献   

18.
A total of 6316 B6CF1 mice were exposed to 60 equal once-weekly doses of 0.85-MeV fission neutrons (0.033 to 0.67 cGy per weekly fraction) or 60Co gamma rays (1.67 to 10 cGy per weekly fraction) and were observed until they died. The mean aftersurvival times showed that the dose-response curves for both neutron and gamma-ray exposures were indistinguishable from linear over all doses except the highest neutron dose. The relative biological effectiveness (RBE) for neutrons, calculated as the ratio of the initial slopes of the dose-response curves, was about 20 for both males and females. Essentially the same value was obtained by a number of other analyses of the data. Virtually all of the radiation-specific excess mortality could be attributed to tumors; after decrementation of the population for nontumor deaths, the value of the RBE was not significantly changed.  相似文献   

19.
Renal damage in the mouse: the response to very small doses per fraction   总被引:12,自引:0,他引:12  
  相似文献   

20.
It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays—leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both colon absorbed dose covariables, is 65 (95 %CI: 11; 170). Therefore, although the 95 % CI is quite wide, reference to the colon doses with a neutron weighting of 10 may not be optimal as the basis for the determination of all solid cancer risks. Further investigations into the neutron RBE are required, ideally based on the LSS data with organ-specific neutron and γ-ray absorbed doses for all organs rather than the RBE weighted absorbed doses currently provided. The HP method is also suggested for use in other epidemiological cohort analyses that involve correlated explanatory covariables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号