首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporin-2, a water-channel protein, is known to increase water permeability due to vasopressin binding to V2 receptors at the renal collecting duct and is excreted into the urine. It is still unclear whether a hyponatremic state is caused by vasopressin-dependent aquaporin-2 in patients clinically diagnosed with the syndrome of inappropriate secretion of antidiuretic hormone. To determine this, we measured urinary aquaporin-2 and vasopressin by radioimmunoassay in normonatremic or hyponatremic patients after cerebral infarction and in healthy controls. In the normonatremia group, urinary aquaporin-2 and plasma AVP levels were higher than in controls. In the hyponatremia group, plasma AVP was relatively high despite low plasma osmolality in each patient. However, urinary aquaporin-2 in hyponatremia was significantly increased when compared with the other two groups. In conclusion, AQP-2 increment does not directly reflect non-osmotic AVP secretion in a hyponatremic state. This result indicates that the urinary excretion of AQP-2 is not only AVP-dependent in hyponatremic states.  相似文献   

2.
Conscious Merino ewes were given an intravenous hypertonic sodium chloride load of 4 mmol.min-1 for 100 min. This resulted in increases in urine flow, sodium and potassium excretion and plasma sodium concentration and osmolality. Urinary vasopressin output and solute-free water reabsorption increased and plasma renin activity declined. Renal plasma flow and glomerular filtration rate (GFR) rose, as did the solute clearance. The change in urinary osmolality was related to the initial urine osmolality such that when the initial urine osmolality was high the urine became more dilute, and vice versa. Tubular sodium reabsorption increased but the fractional reabsorption rate fell. It is suggested that the increase in GFR was at least partly due to the increase in AVP and that the electrolyte loss can be accounted for by the increase in GFR without necessarily involving AVP or other hormonal effects at the tubular level.  相似文献   

3.
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). During normal water intake or after water deprivation, urine osmolality (U(osm)) was reduced in CD AC6 KO animals vs. controls. Similarly, U(osm) was decreased in CD AC6 KO mice vs. controls after water deprivation+DDAVP administration. Pair-fed (with controls) CD AC6 KO mice also had lower urine osmolality vs. controls. There were no detectable differences between KO and control animals in fluid intake or urine volume under any conditions. CD AC6 KO mice did not have altered plasma AVP levels vs. controls. AVP-stimulated cAMP accumulation was reduced in acutely isolated inner medullary CD (IMCD) from CD A6 KO vs. controls. Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.  相似文献   

4.
The main physicochemical parameters of blood serum (the osmolality and concentrations of Na+, K+, Ca2+, and Mg2+) determined in 314 children (from newborn infants to 17-year-old adolescents) and 25 adults were found to be virtually constant throughout the postnatal period, which was due to the high effectiveness of the systems responsible for their stabilization. From the first postnatal days until puberty, prostaglandin E2 (PGE2) and arginine vasopressin (AVP) are involved in the regulation of renal water excretion. In infants, during their first postnatal months, the excretion of solute-free water is correlated with the excretion of PGE2. Adult-type effects of AVP on the reabsorption of solute-free water were observed in children only after 12 postnatal months. A change in the reabsorption of ions in the thick ascending limb of Henle’s loop was shown to be involved in the regulation of the volume of urine excreted. AVP and PGE2 are also involved in the regulation of the distal segment of the nephron and collecting tubules, but their influence on the volume and composition of urine is age-dependent.  相似文献   

5.
The placental leucine aminopeptidase (P-LAP)/oxytocinase is a membrane-bound enzyme thought to play an important role during pregnancy. In this study, we identified the presence of P-LAP protein in the renal distal tubules and collecting ducts. In rat NRK52E cells derived from renal tubules, P-LAP was localized mainly in the intracellular compartment. Upon the treatment of cells with 8-arginine-vasopressin (AVP), a significant increase in the surface level of P-LAP was observed. [deamino-Cys1, d-Arg8]-vasopressin (DDAVP), a specific V2 receptor agonist, increased the surface level of P-LAP, while [adamantaneacetyl1, O-Et-d-Tyr2, Val4, aminobutyryl6, Arg8,9]-vasopressin (AEAVP), a potent V2 receptor antagonist, blocked the AVP-stimulated enhancement. Moreover, reagents known to enhance the intracellular level of cAMP have also been shown to increase the surface level of P-LAP. When we examined the colocalization of P-LAP with the cell surface water channel aquaporin-2 (AQP-2) that is regulated by AVP, the P-LAP-containing vesicles had a relatively higher density than the AQP-2-containing vesicles, suggesting that P-LAP and AQP-2 are differently distributed in NRK52E cells. These results suggest that AVP induces the translocation of P-LAP via V2 receptor and P-LAP plays a role in the regulation of excessive AVP level in the renal collecting duct, acting as a negative feedback mechanism for the AVP action of regulating water reabsorption.  相似文献   

6.
Lithium treatment for 4 wk caused severe polyuria, dramatic downregulation in aquaporin-2 (AQP-2) expression, and marked decrease in AQP-2 immunoreactivity with the appearance of a large number of cells without AQP-2 labeling in the collecting ducts after lithium treatment. Surprisingly, this was not all due to an increase in AQP-2-negative principal cells, because double immunolabeling revealed that the majority of the AQP-2-negative cells displayed [H+]ATPase labeling, which identified them as intercalated cells. Moreover, multiple [H+]ATPase-labeled cells were adjacent, which was never seen in control rats. Quantitation confirmed a significant decrease in the fraction of collecting duct cells that exhibited detectable AQP-2 labeling compared with control rats: in cortical collecting ducts, 40 ± 3.4 vs. 62 ± 1.8% of controls (P < 0.05; n = 4) and in inner medullary collecting ducts, 58 ± 1.6 vs. 81 ± 1.3% of controls (P < 0.05; n = 4). In parallel, a significant increase in the fraction of intercalated ([H+]ATPase-positive) cells was shown. Urine output, whole kidney AQP-2 expression, cellular organization, and the fractions of principal and intercalated cells in cortex and inner medulla returned to control levels after 4 wk on a lithium-free diet following 4 wk on a lithium-containing diet. In conclusion, lithium treatment not only decreased AQP-2 expression, but dramatically and reversibly reduced the fraction of principal cells and altered the cellular organization in collecting ducts. These effects are likely to be important in lithium-induced nephrogenic diabetes insipidus. nephrogenic diabetes insipidus; aquaporin; exchanger  相似文献   

7.
It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP mRNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2(-/-), basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. Water deprivation resulted in lower urine osmolality, higher plasma osmolality in COX-2(-/-) mice irrespective of gender. Hypothalamic AVP mRNA level increased and was unchanged between COX-2(-/-) and WT after WD. AVP peptide content was higher in COX-2(-/-) compared with WT. At baseline, plasma AVP concentration was elevated in conscious chronically catheterized COX-2(-/-) mice, but after WD plasma AVP was unchanged between COX-2(-/-) and WT mice (43 ± 11 vs. 70 ± 16 pg/ml). Renal V2 receptor abundance was downregulated in COX-2(-/-) mice. Medullary interstitial osmolality increased and did not differ between COX-2(-/-) and WT after WD. Aquaporin-2 (AQP2; cortex-outer medulla), AQP3 (all regions), and UT-A1 (inner medulla) protein abundances were elevated in COX-2(-/-) at baseline and further increased after WD. COX-2(-/-) mice had elevated plasma urea and creatinine and accumulation of small subcapsular glomeruli. In conclusion, hypothalamic COX-2 activity is not necessary for enhanced AVP expression and secretion in response to water deprivation. Renal medullary COX-2 activity negatively regulates AQP2 and -3. The urine concentrating defect in COX-2(-/-) is likely caused by developmental glomerular injury and not dysregulation of AVP or collecting duct aquaporins.  相似文献   

8.
Arginine vasopressin (AVP) plays a major role in the modulation of water reabsorption in mammalian kidney. In addition to short-term regulation of aquaporin 2 (AQP2) trafficking, AVP also has long-term effects to regulate the expression of AQP2 in renal collecting duct. However, the detailed mechanism of the long-term effects of AVP in kidney remains to be elucidated. We have searched for genes induced by AVP using the polymerase chain reaction-based suppression subtractive hybridization technique in AVP-responsive AQP2-transfected MDCK cells. We found that the expression of the genes such as VIP17/MAL, annexin II, stimulatory GTP binding protein, tubulin, and mitochondrial ATP synthase was induced by AVP treatment for 4h. These results suggest that AVP might induce the expression of several genes related to the apical targeting of newly synthesized AQP2 as well as that of AQP2 for the long-term modification of water permeability in renal collecting duct.  相似文献   

9.
10.
The response ofH+-ATPase to lethal acid stress isunknown. A mutant strain (called NHE2d) was derived from cultured inner medullary collecting duct cells (mIMCD-3 cells) following three cyclesof lethal acid stress. Cells were grown to confluence on coverslips,loaded with2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, andmonitored for intracellular pH(pHi) recovery from an acid load. The rate of Na+-independentpHi recovery from an acid load inmutant cells was approximately fourfold higher than in parent cells(P < 0.001). TheNa+-independentH+ extrusion was ATP dependent and K+ independent and wascompletely inhibited in the presence of diethylstilbestrol, N, N'-dicyclohexylcarbodiimide,or N-ethylmaleimide. Theseresults indicate that theNa+-independentH+ extrusion in cultured medullarycells is mediated via H+-ATPaseand is upregulated in lethal acidosis. Northern hybridization experiments demonstrated that mRNA levels for the 16- and 31-kDa subunits of H+-ATPase remainedunchanged in mutant cells compared with parent cells. We propose thatlethal acid stress results in increased H+-ATPase activity in innermedullary collecting duct cells. Upregulation ofH+-ATPase could play a protectiverole against cell death in severe intracellular acidosis.

  相似文献   

11.
Fine regulation of water reabsorption by the antidiuretic hormone [8-arginine]vasopressin (AVP) occurs in principal cells of the collecting duct and is largely dependent on regulation of the aquaporin-2 (AQP2) water channel. AVP-inducible long term AQP2 expression was investigated in immortalized mouse cortical collecting duct principal cells. Combined RNase protection assay, Western blot, and immunofluorescence analyses revealed that physiological concentrations of AVP added to the basal side, but not to the apical side, of cells grown on filters induced both AQP2 mRNA and apical protein expression. The stimulatory effect of AVP on AQP2 expression followed a V(2) receptor-dependent pathway because [deamino-8-d-arginine]vasopressin (dDAVP), a specific V(2) receptor agonist, produced the same effect as AVP, whereas the V(2) antagonist SR121463B antagonized action of both AVP and dDAVP. Moreover, forskolin and cyclic 8-bromo-AMP fully reproduced the effects of AVP on AQP2 expression. Analysis of protein degradation pathways showed that inhibition of proteasomal activity prevented synthesis of AVP-inducible AQP2 mRNA and protein. Once synthesized, AQP2 protein was quickly degraded, a process that involves both the proteasomal and lysosomal pathways. This is the first study that delineates induction and degradation mechanisms of AQP2 endogenously expressed by a renal collecting duct principal cell line.  相似文献   

12.
It is well known that ammonium ion excretion is increased during metabolic acidosis in mammals. The purpose of this study was to determine whether we could isolate from human urine during metabolic acidosis a factor that would stimulate NH4+ and/or H+ excretion in toad urinary bladder. Extracts of urine from six human subjects collected during NH4Cl-induced acidosis were prepared. These extracts were tested for their effect on NH4+ excretion in hemibladders mounted between plastic chambers. The extracts significantly increased NH4+ excretion in the toad urinary bladder. We found no effect on H+ excretion by these extracts. This ammoniuretic activity was not present in the urine when the same individuals were in metabolic alkalosis. We conclude that during metabolic acidosis a humoral factor is present which stimulates the excretion of NH4+. The factor could act as a permease in the bladder cell or as a stimulator of an NH4+ transport system.  相似文献   

13.
Vasopressin controls renal water excretion largely through actions to regulate the water channel aquaporin-2 in collecting duct principal cells. Our knowledge of the mechanisms involved has increased markedly in recent years with the advent of methods for large-scale systems-level profiling such as protein mass spectrometry, yeast two-hybrid analysis, and oligonucleotide microarrays. Here we review this progress.Regulation of water excretion by the kidney is one of the most visible aspects of everyday physiology. An outdoor tennis game on a hot summer day can result in substantial water losses by sweating, and the kidneys respond by reducing water excretion. In contrast, excessive intake of water, a frequent occurrence in everyday life, results in excretion of copious amounts of clear urine. These responses serve to exact tight control on the tonicity of body fluids, maintaining serum osmolality in the range of 290–294 mosmol/kg of H2O through the regulated return of water from the pro-urine in the renal collecting ducts to the bloodstream.The importance of this process is highlighted when the regulation fails. For example, polyuria (rapid uncontrolled excretion of water) is a sometimes devastating consequence of lithium therapy for bipolar disorder. On the other side of the coin are water balance disorders that result from excessive renal water retention causing systemic hypo-osmolality or hyponatremia. Hyponatremia due to excessive water retention can be seen with severe congestive heart failure, hepatic cirrhosis, and the syndrome of inappropriate antidiuresis.The chief regulator of water excretion is the peptide hormone AVP,2 whereas the chief molecular target for regulation is the water channel AQP2. In this minireview, we describe new progress in the understanding of the molecular mechanisms involved in regulation of AQP2 by AVP in collecting duct cells, with emphasis on new information derived from “systems-level” approaches involving large-scale profiling and screening techniques such as oligonucleotide arrays, protein mass spectrometry, and yeast two-hybrid analysis. Most of the progress with these techniques is in the identification of individual molecules involved in AVP signaling and binding interactions with AQP2. Additional related issues are addressed in several recent reviews (14).  相似文献   

14.
Rats with hereditary hypothalamic diabetes insipidus, devoid of endogenous ADH, exhibited a prompt antidiuresis when injected subcutaneously or intraarterially with ovine prolactin. The antidiuresis was accompanied by a decrease in free water clearance and an increase in urine osmolality without a change in osmolal clearance or creatinine excretion. Measurement of PAH and insulin clearances indicated that prolactin had no effect on renal plasma flow or glomerular filtration rate. Prolactin injection caused a transient decrease in urinary sodium excretion, but proximal tubular sodium reabsorption, estimated by lissamine green transit time, was unaffected. The antidiuretic effect of prolactin could not be attributed to ADH contamination of the ovine prolactin preparation. Kidney cyclic AMP content was increased significantly 5 min after injection of prolactin. Thus, prolactin has an antidiuretic effect similar to that which occurs as a result of ADH action on the kidney and does not require either the release or the presence of ADH in order to cause the antidiuresis. Further, the impaired water excretion cannot be attributed to an increase in proximal tubular sodium reabsorption or to alteration of renal hemodynamics. It is suggested that prolactin has a direct ADH-like action on the kidney resulting in antidiuresis.  相似文献   

15.
Yoldia hyperborea is a deposit-feeding circumpolar protobranch that also inhabits muddy sediments of the cold water boreal system of Conception Bay, Newfoundland, Canada. Little is known about this species, despite its wide distribution and frequent high density in the benthos. The present work deals with oxygen consumption and ammonia excretion under cold ambient conditions. Y. hyperborea showed low basal metabolism [0.051 ml O2 hу·(g dry weight)у, T=у°C] and low ammonia excretion rates [4.212 µg·NH4-N·hу·(g dry weight)у, T=у°C]. Low metabolic activity could prove a useful strategy during periods of low food availability. In addition, Y. hyperborea was able to regulate its O2 consumption rate at very low pO2 levels, which may be advantageous for a species that may experience periods of hypoxia.  相似文献   

16.
It is well recognized that ANG II interacts with arginine vasopressin (AVP) to regulate water reabsorption and urine concentration in the kidney. The present study used ANG II type 1a (AT(1a)) receptor-deficient (Agtr1a(-/-)) mice to test the hypothesis that AT(1a) receptor signaling is required for basal and water deprivation-induced urine concentration in the renal medulla. Eight groups of wild-type (WT) and Agtr1a(-/-) mice were treated with or without 24-h water deprivation and 1-desamino-8-d-AVP (DDAVP; 100 ng/h ip) for 2 wk or with losartan (10 mg/kg ip) during water deprivation. Under basal conditions, Agtr1a(-/-) mice had lower systolic blood pressure (P < 0.01), greater than threefold higher 24-h urine excretion (WT mice: 1.3 ± 0.1 ml vs. Agtr1a(-/-) mice: 5.9 ± 0.7 ml, P < 0.01), and markedly decreased urine osmolality (WT mice: 1,834 ± 86 mosM/kg vs. Agtr1a(-/-) mice: 843 ± 170 mosM/kg, P < 0.01), without significant changes in 24-h urinary Na(+) excretion. These responses in Agtr1a(-/-) mice were associated with lower basal plasma AVP (WT mice: 105 ± 8 pg/ml vs. Agtr1a(-/-) mice: 67 ± 6 pg/ml, P < 0.01) and decreases in total lysate and membrane aquaporin-2 (AQP2; 48.6 ± 7% of WT mice, P < 0.001) and adenylyl cyclase isoform III (55.6 ± 8% of WT mice, P < 0.01) proteins. Although 24-h water deprivation increased plasma AVP to the same levels in both strains, 24-h urine excretion was still higher, whereas urine osmolality remained lower, in Agtr1a(-/-) mice (P < 0.01). Water deprivation increased total lysate AQP2 proteins in the inner medulla but had no effect on adenylyl cyclase III, phosphorylated MAPK ERK1/2, and membrane AQP2 proteins in Agtr1a(-/-) mice. Furthermore, infusion of DDAVP for 2 wk was unable to correct the urine-concentrating defects in Agtr1a(-/-) mice. These results demonstrate that AT(1a) receptor-mediated ANG II signaling is required to maintain tonic AVP release and regulate V(2) receptor-mediated responses to water deprivation in the inner medulla.  相似文献   

17.
One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment) in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4) expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK). Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR-AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced medulla tonicity may explain the lower concentrating ability observed in hypercalciuric patients.  相似文献   

18.
The renal medulla can play an important role in acid excretion by modulating both hydrogen ion secretion in the medullary collecting duct and the medullary PNH3. The purpose of these experiments was to characterize the intrarenal events associated with ammonium excretion in acute acidosis. Cortical events were monitored in two ways: first, the rates of glutamine extraction and ammoniagenesis were assessed by measuring arteriovenous differences and the rate of renal blood flow; second, the biochemical response of the ammoniagenesis pathway was examined by measuring glutamate and 2-oxoglutarate, key renal cortical metabolites in this pathway. There were no significant differences noted in any of these cortical parameters between acute respiratory and metabolic acidosis. Despite a comparable twofold rise in ammonium excretion in both cases, the urine pH, PNH3, and the urine minus blood PCO2 difference (U-B PCO2) were lower during acute hypercapnia. In these experiments, the urine PCO2 was 34 mmHg (1 mmHg = 133.322 Pa) lower than that of the blood during acute respiratory acidosis while the U-B PCO2 was 5 +/- 3 mmHg in acute metabolic acidosis. Thus there were significant differences in medullary events during these two conditions. Although the urine pH is critical in determining ammonium excretion in certain circumstances, these results suggest that regional variations in the medullary PNH3 can modify this relationship.  相似文献   

19.
N-methyl-D-aspartate receptors (NMDARs) are Ca(2+)-permeable, ligand-gated, nonselective cation channels that function as neuronal synaptic receptors but which are also expressed in multiple peripheral tissues. Here, we show for the first time that NMDAR subunits NR3a and NR3b are highly expressed in the neonatal kidney and that there is continued expression of NR3a in the renal medulla and papilla of the adult mouse. NR3a was also expressed in mIMCD-3 cells, where it was found that hypoxia and hypertonicity upregulated NR3a expression. Using short-hairpin (sh) RNA-based knockdown, a stable inner medullary collecting duct (IMCD) cell line was established that had ~80% decrease in NR3a. Knockdown cells exhibited an increased basal intracellular calcium concentration, reduced cell proliferation, and increased cell death. In addition, NR3a knockdown cells exhibited reduced water transport in response to the addition of vasopressin, suggesting an alteration in aquaporin-2 (AQP2) expression/function. Consistent with this notion, we demonstrate decreased surface expression of glycosylated AQP2 in IMCD cells transfected with NR3a shRNA. To determine whether this also occurred in vivo, we compared AQP2 levels in wild-type vs. in NR3a(-/-) mice. Total AQP2 protein levels in the outer and inner medulla were significantly reduced in knockout mice compared with control mice. Finally, NR3a(-/-) mice showed a significant delay in their ability to increase urine osmolality during water restriction. Thus NR3a may play a renoprotective role in collecting duct cells. Therefore, under conditions that are associated with high vasopressin levels, NR3a, by maintaining low intracellular calcium levels, protects the function of the principal cells to reabsorb water and thereby increase medullary osmolality.  相似文献   

20.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号