首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用加硅与缺硅营养液培养的方法,首次研究证明硅能提高水稻(Oryza sativa L.)叶片抗紫外线胁迫的能力.结果表明,在紫外胁迫条件下,缺硅水稻叶片表面出现明显的棕色伤害斑点,而加硅叶片未出现伤害症状.硅在水稻表皮细胞壁及细胞内部的积累明显促进了紫外吸收物质在表皮细胞中的聚集,使表皮中可溶性酚类物质含量提高17%,不溶性紫外吸收物质的含量增加65%左右.荧光显微镜观察表明,在表皮细胞外壁或胞内沉积的水合二氧化硅固体中包含着大量不溶性的酚类化合物,它们与可溶性酚类物质一起在叶片的上、下表皮细胞中形成了吸收紫外线的屏障.  相似文献   

2.
硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响   总被引:3,自引:0,他引:3  
陈伟  蔡昆争  陈基宁 《生态学报》2012,32(8):2620-2628
硅被认为是植物生长的有益元素,它能增强植物对非生物逆境和生物逆境胁迫的抗性。以抗旱性不同的一对水稻近等基因系w-14-和w-20为实验材料,采用盆栽实验,研究了干旱胁迫下硅处理对水稻生长性状、光合生理特性和矿质养分吸收的影响。结果表明,在正常水分条件下硅处理对水稻的生长及生理特性没有明显影响。干旱胁迫显著降低水稻植株的生长,叶绿素含量、叶绿素荧光参数Fv/Fm及Fv/F0值显著降低,光合作用受到明显抑制。加硅能提高干旱胁迫条件下水稻植株的生物量、水分利用效率、叶片叶绿素含量、净光合速率和蒸腾速率,而气孔导度和细胞间隙CO2浓度则下降。无论干旱与否,施硅后水稻的叶片硅含量均显著上升。两个水稻品系叶片的无机离子含量在干旱胁迫条件下均呈显著增加的趋势,而硅处理后材料w-14的叶片K+、Na+、Ca2+、Mg2+、Fe3+含量分别降低16.38%,24.50%,19.70%,21.52%,18.58%,w-20则分别降低11.64%,12.11%,16.06%,11.11%和19.15%,并使之回复到与对照更接近的水平。研究结果表明了硅提高水稻植株的抗旱性与光合作用的改善和矿质养分的调节有关。  相似文献   

3.
叶面喷施硅和磷对水稻及其抗白背飞虱的影响   总被引:2,自引:0,他引:2  
【目的】硅可以增强植物的抗病性和对环境胁迫的耐受性,本实验检测了水稻叶面喷施硅和磷后叶片中硅和两种次生物质含量的变化以及喷硅对白背飞虱Sogatella furcifera种群的影响,旨在阐明外源元素施用是否会提高水稻的抗虫性。【方法】采用对分蘖期水稻进行硅肥、磷肥、和两者混合的喷施处理,测定比较了水稻叶片正面和反面硅含量、草酸含量和可溶性糖含量,同时检测了喷施硅肥后水稻叶片硅化细胞数量和取食处理水稻后白背飞虱种群增长的参数。【结果】20和40 mg/L 硅或硅+磷混合施用后,水稻叶片中的硅含量比对照显著增加(P<0.05)。在40 mg/L硅+ 40 mg/L磷喷施处理后,水稻叶片正反面的硅含量分别比对照增加了116%和104.4%。扫描电镜结果显示,处理后的水稻叶片上气孔周围硅化细胞明显增加。此外,硅和磷喷施后3 d和6 d,水稻叶片草酸含量显著增加(P<0.01)。40 mg/L硅处理后的水稻上饲养的白背飞虱产卵量与对照相比明显下降(P<0.05)。【结论】硅+磷喷施处理促进水稻叶片抗虫物质含量增加,硅喷施抑制了白背飞虱的产卵量。  相似文献   

4.
为了明确硅提高黄瓜幼苗抗盐能力的机制,该试验采用水培方法,以黄瓜品种‘津优一号’为材料,对幼苗进行中度盐胁迫,研究在盐胁迫下硅对黄瓜幼苗生长、光合特性、渗透调节物质和离子吸收的影响。结果显示:(1)正常条件下,硅对黄瓜幼苗生长及相关生理指标无明显影响;单独盐处理降低了幼苗叶片叶绿素含量、光合速率、气孔导度、蒸腾速率和叶片含水量,导致幼苗生长受抑。(2)盐胁迫下加硅显著提高了幼苗光合速率和叶片含水量,增加了生物量的积累;在盐胁迫初期,硅加盐处理黄瓜叶片渗透势略低于单独盐处理,此后均高于单独盐处理;硅加盐处理显著提高了叶片可溶性糖含量,尤其是蔗糖含量,而降低了其脯氨酸含量,但对可溶性蛋白含量无显著影响。(3)盐胁迫下黄瓜植株Na+含量大幅上升,K+含量下降,K+/Na+比大幅降低;硅加盐处理降低了黄瓜叶片中Na+含量,提高了K+含量和K+/Na+比。研究表明,盐胁迫条件下,硅能通过减轻叶片离子毒害和增加水分吸收,改善叶片水分状况,从而维持较高的光合能力,提高其抗盐能力;而渗透调节只在盐胁迫初期有轻微缓解作用,不是硅提高黄瓜幼苗抗盐性的主要途径。  相似文献   

5.
施硅增强水稻对纹枯病的抗性   总被引:23,自引:0,他引:23  
采用水培的方法,从细胞学和生理生化方面研究了硅增强水稻对纹枯病的抗性作用。结果表明:加硅处理的水稻叶片硅化细胞和叶片表面的硅元素含量均显著高于缺硅处理(对照):接种纹枯病菌后,加硅处理的MDA含量总体上低于缺硅处理,峰值尤为显著;加硅处理的SOD活性始终高于缺硅处理,接种后第4天加硅处理SOD活性较低时,其POD活性较高,而缺硅处理的POD活性较低,表明硅增强了SOD和POD之间的协调性;接种后硅对CAT和PAL活性没有产生明显影响,但降低了PP0活性;加硅能显著降低水稻植株的纹枯病病情指数。  相似文献   

6.
采用水培方式研究硅对重金属镉胁迫下白骨壤幼苗酚类代谢影响,探讨硅对白骨壤耐受重金属胁迫的影响,结果表明,低浓度镉胁迫(Cd 0.5 mg·L-1)下,随着外源硅的增加,叶片和根系丙二醛含量降低,但Si 50 mg·L-1处理中各器官总酚含量最高,硅对各器官单宁含量影响不显著;高浓度镉(Cd 5 mg·L-1)导致白骨壤叶片和根系膜脂过氧化,使得丙二醛含量显著高于对照,外源硅的添加显著降低了白骨壤叶片和根系丙二醛积累,Si 100mg·L-1显著增加了各器官中总酚含量和单宁含量,根系丙二醛含量与根系总酚含量呈显著负相关,叶片丙二醛含量与叶片单宁含量呈显著负相关,表明硅显著刺激高镉胁迫下白骨壤植物组织中酚类物质代谢,增加根系和叶片的抗氧化性,进而增加白骨壤对镉的耐受性。  相似文献   

7.
 以新疆泌盐植物小獐毛(Aeluropus pungens)为材料,研究盐胁迫下小獐毛植物体元素吸收、分泌和过氧化物酶活性的变化以及硅对上述指标的影响。结果表明:在盐分胁迫下,其植物体钠离子浓度升高,钙元素含量降低,其它元素含量变化不明显。叶片硅元素含量随盐胁迫而增加。同时,当盐分浓度由0 mmol·L-1升至120 mmol·L-1浓度时,盐腺对各种离子的分泌作用表现为先加强(60 mmol·L-1)后降低(120 mmol·L-1)的趋势;其叶及根可溶性蛋白变化不明显,但过氧化物酶活性随盐胁迫而升高;可溶性蛋白含量叶片高于根部,而过氧化物酶活性根部高于叶片。同时盐胁迫对小獐毛根部及叶片含水量无明显影响。通过细胞化学定位结果显示, 小獐毛叶表富含硅元素,硅元素在叶表排列沿叶脉方向呈线性分布;在其叶片盐腺上,硅元素分布于帽细胞顶部,在此过氧化物酶(POD)活性也较强。元素分析结果显示,小獐毛体内富积硅元素。在较低的NaCl(60 mmol·L-1)浓度下,施用硅处理可减少叶片钠离子浓度,使地上部对钾、钠元素的相对选择性明显提高。在较高盐浓度(120 mmol·L-1NaCl)下,加硅对叶片钠离子浓度的降低作用效果不明显。在盐胁迫下,加硅未能减少根中钠离子浓度,但可明显增加叶片POD活性。实验结果表明,盐生植物小獐毛可通过维持体内含水量,调节植物体内元素分布以及增加POD活性适应一定程度的盐胁迫。同时低盐条件下施硅处理小獐毛根系培养环境可通过减少盐分向地上部的运输,增加叶片清除自由基的能力从而提高植物抗盐性。  相似文献   

8.
水稻中硅的营养功能及生理机制的研究进展   总被引:5,自引:0,他引:5  
尽管硅还没有被列为植物生长的必需营养元素,但它在水稻生长发育、产量与品质形成、矿质营养吸收以及逆境生理等方面都具有重要的作用。硅不仅是水稻细胞结构成分和组成物质,还参与调节水稻各种生理生化代谢过程,促进光合作用,改善冠层结构,增强抗倒伏能力,提高群体质量,促进产量、品质和肥料吸收利用效率的协同提高。硅通过物理途径或生理生化途径增强水稻对重金属、盐渍、干旱、紫外线、高温等非生物胁迫以及病虫生物胁迫的抵抗力。还展望了水稻中硅研究的未来发展。  相似文献   

9.
Gao KH  Ge Y  Zhang CH 《应用生态学报》2011,22(7):1796-1802
通过设置缺硫(S)处理,研究了镉(Cd)胁迫下水稻生长情况、幼苗Cd和非蛋白巯基含量以及谷胱甘肽硫转移酶(GST)活性的动态变化.结果表明:Cd胁迫明显抑制了水稻生长,显著诱导了巯基物质[非蛋白巯基(NPT)、谷胱甘肽(GSH)、植物螯合肽(PC)]的合成,GST活性表现出先升后降的趋势.缺S处理下,尽管水稻根部对Cd的吸收和向地上部的转运都有所增加,但Cd胁迫程度并未明显增强,巯基物质含量明显降低,根部GST活性提高.表明巯基物质和GST在水稻抗Cd胁迫过程中互为补充,在一定程度上减轻了Cd的毒性效应.  相似文献   

10.
研究了水稻成熟叶片和稻壳中硅体的物相、自发荧光、红外和紫外吸收特性。X-射线衍射结果和显微红外摄谱结果一致表明稻壳硅体结构单一,为典型无定型矿质S iO2。稻壳硅体在紫外激发下没有自发荧光,表明稻壳硅体不含酚类化合物,因此硅体在285 nm处的强烈吸收为稻壳硅体本身所为。叶片硅体结构变异较大,硅体与标准物质无定形硅矿质之间存在细微的差异,并且哑铃形硅体、扇形硅体和不规则硅体的红外吸收光谱也不尽相同,叶片中这3种硅体在紫外激发下都能够自发荧光,表明叶片硅体中含有酚类化合物。硅体混合物仅在290 nm处有微弱的吸收,显示出叶片硅体在结构和性质上的变异性和复杂性。  相似文献   

11.
12.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

13.
Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs   总被引:5,自引:1,他引:4  
The content and distribution of UV-absorbing phenolic compounds was investigated in leaves of three species of Vaccinium co-existing at a site in north Sweden. Vaccinium myrtillus L., Vaccinium vitis-idaea L., and Vaccinium uliginosum L. exhibit markedly different strategies, in terms of localization and content of leaf phenolics and in their responses to UV-B enhancement. Plants were exposed to either ambient radiation or to enhancement of UV-B corresponding to 15% (clear sky) depletion of stratospheric ozone for approximately 10 years prior to commencement of this study. Vaccinium myrtillus contained the highest concentration of methanol-extractable UV-B-absorbing compounds, which was elevated in plants exposed to enhanced UV-B. Fluorescence and confocal laser scanning microscopy showed that these compounds were distributed throughout the leaf, and were particularly concentrated in chlorophyll-containing cells. In V. vitis-idaea, most phenolic compounds were cell wall-bound and concentrated in the walls of the epidermis; this pool increased in response to UV-B enhancement. It is suggested that these two plants represent extreme forms of two divergent strategies for UV-B screening, the different responses possibly being related to leaf longevity in the two species. The response of V. uliginosum was intermediate between the other two, with high concentrations of cell wall-bound phenolics in the epidermis but with this pool decreasing, and the methanol-soluble pool tending to increase, after exposure to enhanced UV-B. One explanation for this response is that this plant is deciduous, like V. myrtillus, but has leaves that are structurally similar to those of V. vitis-idaea.  相似文献   

14.
The biological function of juvenile leaves pigmented with anthocyanin is poorly understood. The role anthocyanins play in UV protection was assessed in juvenile leaves of two Syzygium species (S. luehmannii and S. wilsonii) which contain high anthocyanin concentrations. HPLC was used to separate UV-absorbing anthocyanins from other soluble UV-absorbing phenolic compounds. The isolated anthocyanins (predominantly malvidin-3,5-diglucoside) contributed little to the total absorbance of UV-A and UV-8 radiation. This was because the non-acylated anthocyanins only effectively absorbed shortwave UV-B radiation and the strong absorbance by other compounds. These results suggest that the UV protection hypothesis is not valid for anthocyanins in juvenile Syzygium leaves.  相似文献   

15.
《Journal of plant physiology》2014,171(16):1545-1553
The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.  相似文献   

16.
Predicted increase in ultraviolet-B (UV-B: 280–320 mn) radiation may have adverse impacts on growth and yield of rice ( Oryza sativa L.), as has been found in studies hitherto. However, most of the studies were conducted in growth chambers or greenhouses where the plants are generally more sensitive to UV-B than in the field, presumably because of the distorted balance between UV-B and ultraviolet-A as well as PAR. This study was conducted to address the effects of enhanced UV-B on growth and yield of rice under a realistic spectral balance in the field. Three cultivars, "Koshihikari",'IR 45'and'IR 74'were pot-grown and irradiated with enhanced UV-B for most of the growing season in the field at Tsukuba, Japan (36°01'N, 140°07'E). The UV-B enhancement simulated ca 38% depletion of stratospheric ozone at Tsukuba. The results showed no UV-B effects on plant height, numbers of tillers and panicles, dry weight of the plant parts or the grain yield for any of the 3 cultivars. Natural abundance of 13C in the flag leaves was not altered by the UV-B enhancement either. While UV-absorbing compounds showed no response to the UV-B enhancement, chlorophyll contents decreased with enhanced UV-B. However, the decrease of chlorophyll was limited to an early growth stage with no effect later. We thus found no extraordinary impact of the nearly doubled UV-B radiation on rice in the field, and it would appear that a reliable prediction of the effects of UV-B will require experiments carried out over a number of years under various climatic and solar UV-B regimes.  相似文献   

17.
The present study was undertaken in order to investigate the suitability of certain markers for UV plant response. In addition, we attempted to link the internal tissue distribution of specific UV-absorbing compounds to profiles of radiation gradients within intact primary rye leaves ( Secale cereale L. cv. Kustro). Etiolated rye seedlings irradiated with low visible light (LL) and/or UV radiation were used to study enzyme activities of the two key enzymes, phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), together with the tissue-specific accumulation of soluble phenylpropanoid products. Plants grown under relatively high visible light (HL) with or without supplementary UV-B radiation were used for further characterization. Apparent quantum yield and fluorescence quenching parameters were monitored to assess potential physiological changes due to UV-B exposure in HL-grown seedlings. A quartz fibreoptic microprobe was used to characterize the internal UV-B gradient of the leaf. The response of the phenylpropanoid metabolism to UV radiation was similar in primary leaves of both etiolated and HL-treated green plants. The epidermis-specific flavonoids together with CHS activity turned out to be suitable markers for assessing the effect of UV on the phenolic metabolism. The functional role of phenylpropanoid compounds was strongly implicated in protecting rye from UV-B radiation.  相似文献   

18.
Cacti of the genus puntia are an economically important crop. Understanding the mechanisms they possess to protect against UV radiation is important for assessing their possible response to climatic change. Measurements of the concentrations of UV-screening compounds and epidermal transmittance for two species of platyopuntia, Opuntia engelmannii Salm-Dyck. and O. phaeacantha Engelm. during 1998 and 1999 were used to investigate the UV-protection afforded by the cactus epidermis. A UV-radiative transfer model was used to investigate the interception of UV radiation on differently oriented surfaces. We show that vertical morphology itself confers significant protection against UV radiation compared to a horizontal surface. Concentrations of UV-screening flavonoids were found to vary depending on the UV exposure of different surfaces. West-facing surfaces had lower concentrations than east-facing surfaces, although theoretically they should be identical. This might be explained by the higher mean temperatures on west-facing surfaces. Although UV-absorbing soluble flavonoids in the epidermis block both UV-B and UV-A, the structure of the epidermis alone may be sufficient to remove up to 94% of the UV-B portion of the spectrum. These data yield insights into possible mechanisms of recent declines in cacti populations.  相似文献   

19.
Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号