首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work has shown exotic and native plant species richness are negatively correlated at fine spatial scales and positively correlated at broad spatial scales. Grazing and invasive plant species can influence plant species richness, but the effects of these disturbances across spatial scales remain untested. We collected species richness data for both native and exotic plants from five spatial scales (0.5–3000 m2) in a nested, modified Whittaker plot design from severely grazed and ungrazed North American tallgrass prairie. We also recorded the abundance of an abundant invasive grass, tall fescue (Schedonorus phoenix (Scop.) Holub), at the 0.5-m2 scale. We used linear mixed-effect regression to test relationships between plant species richness, tall fescue abundance, and grazing history at five spatial scales. At no scale was exotic and native species richness linearly related, but exotic species richness at all scales was greater in grazed tracts than ungrazed tracts. Native species richness declined with increasing tall fescue abundance at all five spatial scales, but exotic species richness increased with tall fescue abundance at all but the broadest spatial scales. Severe grazing did not reduce native species richness at any spatial scale. We posit that invasion of tall fescue in this working landscape of originally native grassland plants modifies species richness-spatial scale relationships observed in less disturbed systems. Tall fescue invasion constitutes a unique biotic effect on plant species richness at broad spatial scales.  相似文献   

2.
Symbiotic associations between plants and arbuscular mycorrhizal fungi are ubiquitous and ecologically important in many grasslands. Differences in species responses to mycorrhizal colonization can have a significant influence on plant community structure. The growth responses of 36 species of warm- and cool-season tallgrass prairie grasses and 59 tallgrass prairie forbs to arbuscular mycorrhizal (AM) fungal colonization were assessed in greenhouse studies to examine the extent of interspecific variation in host-plant benefit from the symbiosis and patterns of mycorrhizal dependence among host plant life history (e.g., annual, perennial) and taxonomic (e.g., grass, forb, legume, nonlegume) groups and phenological guilds. There was a strong and significant relationship between phenology of prairie grasses and mycorrhizal responsiveness, however this relationship was less apparent in forbs. Perennial warm-season C(4) grasses and forbs generally benefited significantly from the mycorrhizal symbiosis, whereas biomass production of the cool-season C(3) grasses was not affected. The root systems of the cool-season grasses were also less highly colonized by the AM fungi, as compared to the warm-season grasses or forbs. Unlike the native perennials, annuals were generally not responsive to mycorrhizal colonization and were lower in percentage root colonization than the perennial species. Plant growth responsiveness and AM root colonization were positively correlated for the nonleguminous species, with this relationship being strongest for the cool-season grasses. In contrast, root colonization of prairie legumes showed a significant, but negative, relationship to mycorrhizal growth responsiveness.  相似文献   

3.
Tall fescue (Festuca arundinacea Schreb.), a highly competitive European grass that invades US grasslands, is reportedly allelopathic to many agronomic plants, but its ability to inhibit the germination or growth of native grassland plants is unknown. In three factorial glasshouse experiments, we tested the potential allelopathic effects of endophyte-infected (E+) and uninfected (E−) tall fescue on native grasses and forbs from Midwestern tallgrass prairies. Relative to a water control, at least one extract made from ground seed, or ground whole plant tissue of E+ or E− tall fescue reduced the germination of 10 of 11 species in petri dishes. In addition, the emergence of two native grasses in potting soil was lower when sown with E+ and E− tall fescue seedlings than when sown with seeds of conspecifics or tall fescue. However, when seeds of 13 prairie species were sown in sterilized, field-collected soil and given water or one of the four tall fescue extracts daily, seedling emergence was lower in one extract relative to water for only one species, and subsequent height growth did not differ among treatments for any species. We conclude that if tall fescue is allelopathic, its inhibitory effects on the germination and seedling growth of native prairie plants are limited, irrespective of endophyte infection. On the other hand, the apparent inability of these plants to detect tall fescue in field soil could hinder prairie restoration efforts if germination near this strong competitor confers fitness consequences. We propose that lack of chemical recognition may be common among resident and recently introduced non-indigenous plants because of temporally limited ecological interactions, and offer a view that challenges the existing allelopathy paradigm. Lastly, we suggest that tall fescue removal will have immediate benefits to the establishment of native grassland plants.  相似文献   

4.
We surveyed the prevalence and amount of leaf damage related to herbivory and pathogens on 12 pairs of exotic (invasive and noninvasive) and ecologically similar native plant species in tallgrass prairie to examine whether patterns of damage match predictions from the enemy release hypothesis. We also assessed whether natural enemy impacts differed in response to key environmental factors in tallgrass prairie by surveying the prevalence of rust on the dominant C4 grass, Andropogon gerardii, and its congeneric invasive exotic C4 grass, A. bladhii, in response to fire and nitrogen fertilization treatments. Overall, we found that the native species sustain 56.4% more overall leaf damage and 83.6% more herbivore-related leaf damage when compared to the exotic species. Moreover, we found that the invasive exotic species sustained less damage from enemies relative to their corresponding native species than the noninvasive exotic species. Finally, we found that burning and nitrogen fertilization both significantly increased the prevalence of rust fungi in the native grass, while rust fungi rarely occurred on the exotic grass. These results indicate that reduced damage from enemies may in part explain the successful naturalization of exotic species and the spread of invasive exotic species in tallgrass prairie.  相似文献   

5.
Pastures dominated by tall fescue (Schedonorus phoenix (Scop.) Holub) cover much of the eastern United States, and there are increasing efforts to restore native grassland plant species to some of these areas. Prescribed fire and herbicide are frequently used to limit the growth of tall fescue and other non‐natives, while encouraging native grasses and forbs. A fungal endophyte, commonly present in tall fescue, can confer competitive advantages to the host plant, and may play a role in determining the ability of tall fescue plants to persist in pastures following restoration practices. We compared vegetation composition among four actively restored subunits of a tall fescue pasture (each receiving different combinations of prescribed fire and/or herbicide) and a control. We also measured the rate of endophyte infection in tall fescue present within each restoration treatment and control to determine if restoration resulted in lower tall fescue cover but higher endophyte infection rates (i.e. selected for endophyte‐infected individuals). Tall fescue cover was low in all restoration treatments and the control (1.1–17.9%). The control (unmanaged) had higher species richness than restoration treatments and plant community composition was indicative of succession to forest. Restoration practices resulted in higher cover of native warm season grasses, but in some cases also promoted a different undesirable species. We found no evidence of higher fungal endophyte presence in tall fescue following restoration, as all subunits had low endophyte infection rates (2.2–9.3%). Restoration of tall fescue systems using prescribed fire and herbicide may be used to promote native grassland species.  相似文献   

6.
Invasive species may owe some of their success in competing and co-existing with native species to microbial symbioses they are capable of forming. Tall fescue is a cool-season, non-native, invasive grass capable of co-existing with native warm-season grasses in North American grasslands that frequently experience fire, drought, and cold winters, conditions to which the native species should be better-adapted than tall fescue. We hypothesized that tall fescue’s ability to form a symbiosis with Neotyphodium coenophialum, an aboveground fungal endophyte, may enhance its environmental stress tolerance and persistence in these environments. We used a greenhouse experiment to examine the effects of endophyte infection (E+ vs. E−), prescribed fire (1 burn vs. 2 burn vs. unburned control), and watering regime (dry vs. wet) on tall fescue growth. We assessed treatment effects for growth rates and the following response variables: total tiller length, number of tillers recruited during the experiment, number of reproductive tillers, tiller biomass, root biomass, and total biomass. Water regime significantly affected all response variables, with less growth and lower growth rates observed under the dry water regime compared to the wet. The burn treatments significantly affected total tiller length, number of reproductive tillers, total tiller biomass, and total biomass, but treatment differences were not consistent across parameters. Overall, fire seemed to enhance growth. Endophyte status significantly affected total tiller length and tiller biomass, but the effect was opposite what we predicted (E−>E+). The results from our experiment indicated that tall fescue was relatively tolerant of fire, even when combined with dry conditions, and that the fungal endophyte symbiosis was not important in governing this ecological ability. The persistence of tall fescue in native grassland ecosystems may be linked to other endophyte-conferred abilities not measured here (e.g., herbivory release) or may not be related to this plant-microbial symbiosis.  相似文献   

7.
A fundamental goal of restoration is the re-establishment of plant diversity representative of native vegetation. However, many prairie restorations or Conservation Reserve Program sites have been seeded with warm-season grasses, leading to grass-dominated, low-diversity restorations not representative of native grasslands. These dominant grasses are strongly mycotrophic, while many subordinate forb species appear to be less dependent on mycorrhizal symbiosis. Therefore, manipulating arbuscular mycorrhizal fungi (AMF) may be useful in promoting establishment and growth of forb species in grass-dominated prairie restorations. To assess the potential role of mycorrhizae in affecting the productivity and community composition of restored tallgrass prairie, we conducted a 4-year field experiment on an 8-year-old grassland restoration at the Konza Prairie in northeastern Kansas, USA. At the initiation of our study, seeds of 12 forb species varying in degree of mycorrhizal dependence were added to established grass-dominated plots. Replicate plots were treated bi-weekly with a soil drench of fungicide (Topsin-M®) over four growing seasons and compared to non-treated control plots to assess the role of AMF in affecting plant species composition, productivity, leaf tissue quality, and diversity in restored tallgrass prairie. Topsin applications successfully reduced mycorrhizal colonization of grass roots to approximately 60–80% relative to roots in control plots. Four years of mycorrhizal suppression reduced productivity of the dominant grasses and increased plant species richness and diversity. These results highlight the importance of mycorrhizae as mediators of plant productivity and community dynamics in restored tallgrass prairie and indicate that temporarily suppressing AMF decreases productivity of the dominant C4 grasses and allows for establishment of seeded forb species.  相似文献   

8.
The effects of mycorrhizal symbiosis on seedling emergence, flowering and densities of several grasses and forbs were assessed in native tallgrass prairie and in sown garden populations at the Konza Prairie in northeastern Kansas. Mycorrhizal activity was experimentally suppressed with the fungicide benomyl. Flowering and stem densities of the cool-season grass, Dichanthelium oligosanthes, sedges (Carex spp.), and the forb Aster ericoides were higher in non-mycorrhizal (benomyl-treated) than in mycorrhizal plots and the magnitude of these differences was significantly affected by burning. Mycorrhizae significantly enhanced flowering of the warmseason grasses Andropogon gerardii and Sorghastrum nutans in burned prairie, but not in unburned sites. These patterns suggest that mycorrhizal effects on the dynamics of cool-season graminoid and forb populations are likely to be mediated indirectly through effects of the symbiosis on the competitive dominance of their neighbors. Seedling emergence rates of the cool-season C3 grasses Elymus canadensis and Koeleria cristata were significantly reduced in the benomyl-treated plots, whereas benomyl treatment had no significant effect on seedling emergence of the warm-season C4 grasses A. gerardii and Panicum virgatum. The forbs showed variable responses. Seedling emergence of Liatris aspera was greater under mycorrhizal conditions, but that of Dalea purpurea was unaffected by mycorrhizal treatment. These results show that effects of mycorrhizal symbiosis on the population dynamics of co-occurring prairie plants vary significantly both among species and among different life history stages within species. The results also indicate that mycorrhizas and fire interact to influence competitive interactions and demographic patterns of tallgrass prairie plant populations.  相似文献   

9.
Attempting to control invasive plant species in tallgrass prairie restorations is time-consuming and costly, making improved approaches for predicting and reducing invasion imperative. Both biotic and abiotic factors mediate plant invasions, and can potentially be used by restoration managers to reduce invasion rates. Biotic factors such as plant species richness and phylogenetic diversity of the native community may impact invasion. Relatedness of invading species to those in recipient communities has also been shown to influence invasion success. However, the direction of this influence is variable, reflecting Darwin’s Naturalization Conundrum. Abiotic factors such as fire regime and soil factors may impact invasion by selecting against invasive species or indicating suitable habitats for them. We surveyed 17 tallgrass prairie restorations in Illinois, USA, to investigate the effects of biotic and abiotic factors on invasion by non-native plant species at two different scales. We predicted we would find support for Darwin’s Naturalization Hypothesis at the plot (neighborhood) scale with invasion by distantly related species, and find support for the Pre-adaptation Hypothesis at the site scale. We hypothesized that biotic factors would exert more influence at the neighborhood scale, while abiotic factors would be more influential at a coarser site scale. Contrary to our expectations, at the neighborhood scale we found that closely related invasive species are more likely to invade, supporting the Pre-adaptation Hypothesis. We found that native species richness and age of restoration were negatively correlated with invasion. At the site scale, soil organic matter [SOM] concentrations and heterogeneity in SOM were positively associated with the number of invasive species while pH heterogeneity was negatively associated. Restoration practitioners may be able to reduce plant invasions by increasing native species richness, and non-native species most closely related to the resident community should potentially be prioritized as those most likely to be highly invasive.  相似文献   

10.
We studied two tallgrass prairies and adjacent restoration areas in northeast Kansas to analyze (1) the invasion of native tallgrass prairie species from native prairie source populations into replanted areas; (2) the establishment of planted prairie species five and 35 years after being sown; and (3) the effects of native prairie species on soil organic matter. For the majority of dominant species, composition differed statistically between sampled areas even though seed rain was available from the native tallgrass prairie remnants. Plant community differences were statistically different between each native prairie area and all respective restoration sites according to the Multiple Response Permutation Procedure. In addition, species richness was greatly reduced in replanted areas compared to adjacent native prairie remnants. Soil carbon isotope ratios indicated that the planting of warm-season grasses resulted in substantial replacement of old soil organic matter by the newly replanted grasses but that it did not create substantial increases of soil organic matter beyond replacement. The lack of accumulation reflects a nutrient-poor system (nitrogen-poor in particular), and the relative absence of native or introduced nitrogen-fixing plant species on the replanted areas may be a significant factor. It appears that restoration of the original highly diverse vegetation component of the tallgrass prairie ecosystem, even when aided by seeding and an adjacent prairie seed source, will occur on carbon- and nitrogen-depleted soils only over very long periods of time (perhaps centuries), if at all.  相似文献   

11.
Chang CC  Smith MD 《Oecologia》2012,168(4):1091-1102
To improve the understanding of how native plant diversity influences invasion, we examined how population and community diversity may directly and indirectly be related to invasion in a natural field setting. Due to the large impact of the dominant C4 grass species (Andropogon gerardii) on invasion resistance of tallgrass prairie, we hypothesized that genetic diversity and associated traits within a population of this species would be more strongly related to invasion than diversity or traits of the rest of the community. We added seeds of the exotic invasive C4 grass, A. bladhii, to 1-m2 plots in intact tallgrass prairie that varied in genetic diversity of A. gerardii and plant community diversity, but not species richness. We assessed relationships among genetic diversity and traits of A. gerardii, community diversity, community aggregated traits, resource availability, and early season establishment and late-season persistence of the invader using structural equation modeling (SEM). SEM models suggested that community diversity likely enhanced invasion indirectly through increasing community aggregated specific leaf area as a consequence of more favorable microclimatic conditions for seedling establishment. In contrast, neither population nor community diversity was directly or indirectly related to late season survival of invasive seedlings. Our research suggests that while much of diversity–invasion research has separately focused on the direct effects of genetic and species diversity, when taken together, we find that the role of both levels of diversity on invasion resistance may be more complex, whereby effects of diversity may be primarily indirect via traits and vary depending on the stage of invasion.  相似文献   

12.
Recruitment, establishment and survivorship of seed- and vegetatively-derived shoots were quantified biweekly in annually burned and infrequently burned tallgrass prairie to investigate the contributions of seed and vegetative reproduction to the maintenance and dynamics of tallgrass prairie plant populations, the demography of seedlings and ramets, and the influence of fire on the demography of grasses and forbs. Clonally produced grass and forb ramets comprised >99%of all established shoots present at the end of the growing season, whereas established seedlings accounted for <1%,emphasizing the rarity of successful seedling establishment and the importance of vegetative reproduction in driving the annual regeneration and dynamics of aboveground plant populations in tallgrass prairie. Most recruitment from vegetative reproduction occurred early in the growing season and was higher in annually burned than infrequently burned sites, although low levels of new stem recruitment occurred continuously throughout the growing season. Peak recruitment on annually burned prairie coincided with peak recruitment of the dominant C4 grasses Andropogon gerardii and Sorghastrum nutans prior to prescribed spring fire, with a second peak in recruitment occurring following fire. On infrequently burned prairie, grass and forb recruitment was highest in early April and declined steadily through May. The naturalized C3 grass, Poa pratensis, was responsible for most of the early recruitment on unburned sites, whereas A. gerardii contributed most to recruitment later in May. Infrequently burned prairie was dominated by these two grasses and contained a larger forb component than annually burned prairie. The principal demographic effect of fire was on ramet natality rather than mortality. Fire regime, plant functional group, or timing of cohort emergence before or after fire did not affect ramet survivorship. C4 grass shoots that emerged early and were damaged by fire showed similar survivorship patterns to tillers that emerged after fire. Differences in species composition between annually burned and infrequently burned prairie are driven by fire effects on vegetative reproduction and appear to be related principally to the effect of fire and detritus accumulation on the development of belowground vegetative meristems of C4 grasses and their emergence dynamics.  相似文献   

13.
Invasive plants frequently have competitive advantages over native species. These advantages have been characterized in systems in which the invading species has already become well established. Surprisingly, invader impacts on native communities currently undergoing invasion are lacking from most ecological studies. In this work we document and quantify shifting patterns in plant community structure in a native ecosystem (remnant tallgrass prairie) undergoing invasion by the invasive exotic Sorghum halepense (Johnsongrass). Further, we use manipulative field and greenhouse studies to quantify impacts of potential allelochemicals contained in whole-plant S. halepense leachates on growth of the dominant native grass, Schizachyrium scoparium (Little Bluestem), and tested the inhibitory effects of the potential soil legacy of S. halepense on the native grass in the greenhouse. Plant diversity indices revealed three distinct plant communities within the remnant prairie: a native community, a densely S. halepense invaded area, and a transitional zone between the two. Dominance of the native grass, determined by relative percent cover, significantly declined with increased S. halepense invasion via rhizomatous growth. Annual global positioning system monitoring of the S. halepense invasion front was used to quantify advancement into native prairie, documented at an average rate of 0.45 m year?1. In the manipulative field and greenhouse studies, native S. scoparium treated with invasive S. halepense leachate had significantly less biomass and fewer inflorescences than control plants. These findings indicate the prolific clonal growth in conjunction with the plant chemistry of S. halepense play a significant role in displacement of the native grass.  相似文献   

14.
Fungal endophytes in cool-season grasses may affect communities at multiple trophic levels. However, it is unclear whether community-scale endophyte effects arise due to the endophyte itself or as a result of unique, endophyte–host interactions. We used a long-term field experiment to test whether common-toxic (CT) and non-ergot alkaloid-producing (novel) endophytes in Schedonorus arundinaceus (tall fescue) forage cultivars consistently affect communities across tall fescue hosts. Tilled plots (2 × 2 m; Guelph, ON) were seeded with Georgia 5 and Jesup cultivars containing either the CT or AR542 (novel) endophyte and allowed to be re-colonized by plant species from the local propagule pool. Non-seeded control plots were included to assess effects of seeding the non-native grass. We assessed plant, invertebrate, soil moisture, and soil nutrient responses to the endophyte–cultivar treatments after four growing seasons. Seeding tall fescue affected plant species abundances, but not richness, and did not consistently alter soil moisture and nutrient pools. Endophyte identity in the tall fescue cultivars affected the communities, but effects were not consistent between cultivars. Within Georgia 5, the AR542 endophyte reduced tall fescue abundance and altered the invertebrate community relative to CT plots. Within Jesup, the AR542 endophyte reduced species evenness and decreased soil moisture during dry periods relative to CT plots. Endophyte effects were not consistent between cultivars, and it is probable that the community-scale effects of endophyte infection in tall fescue cultivars arise due to unique interactions between cultivar and endophyte.  相似文献   

15.
Experimental microcosms (40 X 52 X 32 cm) containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil were maintained under mycorrhizal (untreated control) or mycorrhizal-suppressed (fungicide-treated) conditions to examine plant growth, demographic, and community responses to mycorrhizal symbiosis. The fungicide benomyl successfully reduced mycorrhizal root colonization in the fungicide-treated microcosms to only 6.4% (an 83% reduction relative to mycorrhizal controls). Suppression of mycorrhizas resulted in a 31% reduction in total net aboveground plant production and changes in the relative production of C4 and C3 plants. The C4 tallgrasses Andropogon gerardi and Sorghastrum nutans produced less plant biomass in the fungicide-treated microcosms, and had a greater ratio of reproductive to vegetative biomass. Cool-season C3 grasses, Koeleria pyramidata and Poa pratensis accumulated more biomass and were a significantly greater proportion of total community biomass in mycorrhizal-suppressed microcosms. Forbs showed variable responses to mycorrhizal suppression. The two legumes Amorpha canescens and Dalea purpurea had significantly lower survivorship in the fungicide-treated microcosms, relative to the controls. The results confirm the high mycorrhizal dependency and growth responsiveness of dominant prairie grasses, and indicate that differential growth and demographic responses to mycorrhizal colonization among species may significantly affect plant productivity and species relative abundances in tallgrass prairie.  相似文献   

16.
Disturbances such as burning or grazing maintain the herbaceous nature of eastern tallgrass prairie. These disturbances are also known to affect the relative abundance of warm-season (C4) and cool-season (C3) grasses in native prairie. Although burning is a commonly used tool, the utility of livestock grazing to manage restored prairie is less understood. We established five monocultures and one mixture of C4 grass species of the eastern tallgrass prairie in southern Wisconsin. To examine their persistence under high-intensity, short-duration summer grazing, we estimated cover of several functional groups and C4 species over a 6-year period (2000 through 2006) in a randomized complete block design. After a 2-year establishment phase (1998–1999), bison were rotated through paddocks two or three times annually during late June, July, or early August. All C4 grasses declined over time but at different rates depending on the species. Switchgrass ( Panicum virgatum ) decreased at the lowest rate, whereas Little bluestem ( Schizachyrium scoparium ) cover declined faster than Big bluestem ( Andropogon gerardii ), Indiangrass ( Sorghastrum nutans ), and Sideoats grama ( Bouteloua curtipendula ), whose rates of decline were not significantly different from each other. Succession followed a predictable trajectory with annual grasses initially colonizing interstitial space among C4 grasses, followed by legumes, which ultimately gave way to exotic C3 forage grasses. The focal C4 grasses remained the dominant functional group 8 years postseeding, but recolonization by non-native C3 grasses increased over the study period.  相似文献   

17.
Theory has predicted, and many experimental studies have confirmed, that resident plant species richness is inversely related to invisibility. Likewise, potential invaders that are functionally similar to resident plant species are less likely to invade than are those from different functional groups. Neither of these ideas has been tested in the context of an operational prairie restoration. Here, we tested the hypotheses that within tallgrass prairie restorations (1) as seed mix species richness increased, cover of the invasive perennial forb, Canada thistle (Cirsium arvense) would decline; and (2) guilds (both planted and arising from the seedbank) most similar to Canada thistle would have a larger negative effect on it than less similar guilds. Each hypothesis was tested on six former agricultural fields restored to tallgrass prairie in 2005; all were within the tallgrass prairie biome in Minnesota, USA. A mixed-model with repeated measures (years) in a randomized block (fields) design indicated that seed mix richness had no effect on cover of Canada thistle. Structural equation models assessing effects of cover of each planted and non-planted guild on cover of Canada thistle in 2006, 2007, and 2010 revealed that planted Asteraceae never had a negative effect on Canada thistle. In contrast, planted cool-season grasses and non-Asteraceae forbs, and many non-planted guilds had negative effects on Canada thistle cover. We conclude that early, robust establishment of native species, regardless of guild, is of greater importance in resistance to Canada thistle than is similarity of guilds in new prairie restorations.  相似文献   

18.
Persistence of forage grasses is enhanced through the deliberate and selective use of symbiotic fungal endophytes that confer benefits, particularly pest resistance. However, they have also been implicated in reduced plant community diversity as a result of directly or indirectly enhancing competitive ability. A relatively underexplored mechanism by which endophytes might influence pasture plant composition is by altering the biotic or abiotic soil conditions. To examine the soil conditioning effects of forage grass species and their fungal symbionts we tested the responses of three pasture plants, perennial ryegrass, prairie grass, and white clover in nine different soils that had been conditioned by monocultures of endophyte-containing (E+), or endophyte-free (E?), perennial ryegrass, tall fescue, or meadow fescue. Conditioning grass species had little effect on the responses of perennial ryegrass and prairie grass regardless of E+ or E? treatments. In contrast, conditioning species had a strong effect on the response of white clover, resulting in reduced biomass when grown in perennial ryegrass conditioned soils. The presence of endophyte also had significant growth consequences for white clover, but was either positive or negative depending on the conditioning grass species. In comparison to their respective E? treatments, E+ tall and meadow fescue conditioned soils resulted in reduced biomass of white clover, whereas E+ perennial ryegrass conditioned soils resulted in increased biomass of white clover. Among the conditioning strains (AR1, AR37, NEA2, WE) of E+ perennial ryegrass, white clover showed significantly different responses, but all responses were positive in comparison to the E? treatment. By examining the effects of several grass species and endophyte strains, we were able to determine the relative importance of grass species vs. fungal symbiont on soil conditioning. Overall, the conditioning effect of grass species was stronger than the effects associated with endophyte, particularly with regard to the response of white clover. We conclude that both grass species and their fungal endophytes can influence pasture plant community composition through plant–soil feedback.  相似文献   

19.
Abstract. Invasive alien grasses can increase fuel loads, leading to changes in fire regimes of invaded ecosystems by increasing the frequency, intensity and spatial extent of fires. Andropogon gayanus Kunth. (Gamba grass), a tall perennial grass from Africa, is invading ecosystems in the Top End of northern Australia. To determine whether A. gayanus alters savanna fire regimes, we compared fuel loads and fire intensities at invaded sites with those from native grass savannas. Savanna invaded by A. gayanus had fuel loads up to seven times higher than those dominated by native grasses. This higher fuel load supported a fire that was on average eight times more intense than those recorded in native grass savannas at the same time of year (means 15700 ± 6200 and 2100 ± 290 kW m−1, respectively), and was the highest early dry season fire intensities ever recorded in the Northern Territory. These results suggest that A. gayanus is a serious threat to northern Australia's savannas, with the potential to alter vegetation structure and initiate a grass-fire cycle.  相似文献   

20.
Human behavior has rapidly evolved from fire-promoting to aggressively attempting to minimize its magnitude and variability. This global shift in human behavior has contributed to the adoption of strict policies that govern the purposeful and planned use of fire in ecosystem science and management. However, it remains unclear the extent to which modern-day prescribed fire policies are altering the potential magnitude and variation of fire behavior in scientific investigations and ecosystem management. Here, we modeled the theoretical historical range of variability (ROV) in fire behavior for the tallgrass prairie ecosystem of North America. We then compared sensitivities in the magnitude and variation in the historical ROV in fire behavior as a result of (1) policies governing prescribed fire and (2) woody and herbaceous plant invasions. Although considerably more attention has focused on changes in fire behavior as a result of biological invasions, our model demonstrates that contemporary fire management policies can meet or surpass these effects. Policies governing prescribed fire management in tallgrass prairie reduced the magnitude and variability of surface fire behavior more than tall fescue invasion and rivaled reductions in fire behavior from decades of Juniperus encroachment. Consequently, fire and its potential as a driver of ecosystem dynamics has been simplified in the study and management of this system, which may be contributing to misleading conclusions on the potential responses of many highly researched environmental priorities. We emphasize the need to study changes in fire dynamics as a function of both social and ecological drivers, in an effort to advance our basic understanding of the role of fire in nature and its potential usefulness in ecosystem management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号