首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence-specific transfer of methyl groups from donor S-adenosyl-L-methionine (AdoMet) to certain positions of DNA-adenine or -cytosine residues by DNA methyltransferases (MTases) is a major form of epigenetic modification. It is virtually ubiquitous, except for some notable exceptions. Site-specific methylation can be regarded as a means to increase DNA information capacity and is involved in a large spectrum of biological processes. The importance of these functions necessitates a deeper understanding of the enzymatic mechanism(s) of DNA methylation. DNA MTases fall into one of two general classes; viz. amino-MTases and [C5-cytosine]-MTases. Amino-MTases, common in prokaryotes and lower eukaryotes, catalyze methylation of the exocyclic amino group of adenine ([N6-adenine]-MTase) or cytosine ([N4-cytosine]-MTase). In contrast, [C5-cytosine]-MTases methylate the cyclic carbon-5 atom of cytosine. Characteristics of DNA MTases are highly variable, differing in their affinity to their substrates or reaction products, their kinetic parameters, or other characteristics (order of substrate binding, rate limiting step in the overall reaction). It is not possible to present a unifying account of the published kinetic analyses of DNA methylation because different authors have used different substrate DNAs and/or reaction conditions. Nevertheless, it would be useful to describe those kinetic data and the mechanistic models that have been derived from them. Thus, this review considers in turn studies carried out with the most consistently and extensively investigated [N6-adenine]-, [N4-cytosine]- and [C5-cytosine]-DNA MTases.  相似文献   

2.
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.  相似文献   

3.
DNA methylation is important in cellular, developmental and disease processes, as well as in bacterial restriction-modification systems. Methylation of DNA at the amino groups of cytosine and adenine is a common mode of protection against restriction endonucleases afforded by the bacterial methyltransferases. The first structure of an N:6-adenine methyltransferase belonging to the beta class of bacterial methyltransferases is described here. The structure of M. RSR:I from Rhodobacter sphaeroides, which methylates the second adenine of the GAATTC sequence, was determined to 1.75 A resolution using X-ray crystallography. Like other methyltransferases, the enzyme contains the methylase fold and has well-defined substrate binding pockets. The catalytic core most closely resembles the PVU:II methyltransferase, a cytosine amino methyltransferase of the same beta group. The larger nucleotide binding pocket observed in M. RSR:I is expected because it methylates adenine. However, the most striking difference between the RSR:I methyltransferase and the other bacterial enzymes is the structure of the putative DNA target recognition domain, which is formed in part by two helices on an extended arm of the protein on the face of the enzyme opposite the active site. This observation suggests that a dramatic conformational change or oligomerization may take place during DNA binding and methylation.  相似文献   

4.
N Ritchot  P H Roy 《Gene》1990,86(1):103-106
It has been reported in the literature that Neisseria gonorrhoeae DNA is modified by the methyltransferases (MTases) M.NgoI, M.NgoII, and M.NgoIII, as well as three other cytosine MTases and one adenine MTase, even if the corresponding restriction endonucleases are not present. We envisioned the possibility of cloning one of the N. gonorrhoeae MTase-encoding genes for use as a species-specific DNA probe. We therefore undertook a survey of methylation patterns of several clinical isolates of N. gonorrhoeae and N. meningitidis as well as ATCC strains of other Neisseriae. We found, from digestion patterns with isoschizomers, one N. gonorrhoeae strain that lacked M.NgoII and two that lacked M.NgoIII. All N. meningitidis strains (save one) were resistant to digestion with NlaIV thus possessing an MTase like NgoV, and one was resistant to SstII, thus having an NgoIII-like MTase. None were resistant to isoschizomers of NgoI, NgoIII and NgoIV. Some other Neisseriae had an MTase with NlaIV (NgoV) specificity, but none had NgoI, II, III or IV specificity, except for the Branhamella-like N. caviae-ovis group and N. lactamica where these specificities were present in at least one strain of this group. Therefore, among the Neisseriae other than N. caviae only M.NgoI is N. gonorrhoeae-specific.  相似文献   

5.
RsrI DNA methyltransferase (M-RsrI) from Rhodobacter sphaeroides has been purified to homogeneity, and its gene cloned and sequenced. This enzyme catalyzes methylation of the same central adenine residue in the duplex recognition sequence d(GAATTC) as does M-EcoRI. The reduced and denatured molecular weight of the RsrI methyltransferase (MTase) is 33,600 Da. A fragment of R. sphaeroides chromosomal DNA exhibited M.RsrI activity in E. coli and was used to sequence the rsrIM gene. The deduced amino acid sequence of M.RsrI shows partial homology to those of the type II adenine MTases HinfI and DpnA and N4-cytosine MTases BamHI and PvuII, and to the type III adenine MTases EcoP1 and EcoP15. In contrast to their corresponding isoschizomeric endonucleases, the deduced amino acid sequences of the RsrI and EcoRI MTases show very little homology. Either the EcoRI and RsrI restriction-modification systems assembled independently from closely related endonuclease and more distantly related MTase genes, or the MTase genes diverged more than their partner endonuclease genes. The rsrIM gene sequence has also been determined by Stephenson and Greene (Nucl. Acids Res. (1989) 17, this issue).  相似文献   

6.
M.HgiDII is a methyltransferase (MTase) from Herpetosiphon giganteus that recognizes the sequence GTCGAC. This enzyme belongs to a group of MTases that share a high degree of amino acid similarity, albeit none of them has been thoroughly characterized. To study the catalytic mechanism of M.HgiDII and its interactions with DNA, we performed molecular dynamics simulations with a homology model of M.HgiDII complexed with DNA and S-adenosyl-methionine. Our results indicate that M.HgiDII may not rely only on Glu119 to activate the cytosine ring, which is an early step in the catalysis of cytosine methylation; apparently, Arg160 and Arg162 may also participate in the activation by interacting with cytosine O2. Another residue from the catalytic site, Val118, also played a relevant role in the catalysis of M.HgiDII. Val118 interacted with the target cytosine and kept water molecules from accessing the region of the catalytic pocket where Cys79 interacts with cytosine, thus preventing water-mediated disruption of interactions in the catalytic site. Specific recognition of DNA was mediated mainly by amino acids of the target recognition domain, although some amino acids (loop 80–88) of the catalytic domain may also contribute to DNA recognition. These interactions involved direct contacts between M.HgiDII and DNA, as well as indirect contacts through water bridges. Additionally, analysis of sequence alignments with closely related MTases helped us to identify a motif in the TRD of M.HgiDII that may be relevant to specific DNA recognition.  相似文献   

7.
DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.  相似文献   

8.
We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.  相似文献   

9.
Like in bacteria, DNA in these organisms is subjected to enzymatic modification (methylation) both at adenine and cytosine residues. There is an indirect evidence that adenine DNA methylation takes place also in animals. In plants m6A was detected in total, mitochondrial and nuclear DNAs; in plants one and the same gene (DRM2) can be methylated both at adenine and cytosine residues. ORF homologous to bacterial adenine DNA-methyltransferases are present in nuclear DNA of protozoa, yeasts, insects, nematodes, higher plants, vertebrates and other eukaryotes. Thus, adenine DNA-methyltransferases can be found in the various evolutionary distant eukaryotes. First N6-adenine DNA-methyltransferase (wadmtase) of higher eukaryotes was isolated from vacuolar fraction of vesicles obtained from aging wheat coleoptiles; in the presence of S-adenosyl-L-methionine this Mg2+ -, Ca2+ -dependent enzyme de novo methylates first adenine residue in TGATCA sequence in single- and double-stranded DNA but it prefers single-stranded DNA structures. Adenine DNA methylation in eukaryotes seems to be involved in regulation of both gene expression and DNA replication including replication of mitochondrial DNA. It can control persistence of foreign DNA in a cell and seems to be an element of R-M system in plants. Thus, in eukaryotic cell there are, at least, two different systems of the enzymatic DNA methylations (adenine and cytosine ones) and a special type of regulation of gene functioning based on the combinatory hierarchy of these interdependent genome modifications.  相似文献   

10.
Methylation of DNA occurs at the C5 and N4 positions of cytosine and N6 of adenine. The chemistry of methylation is similar among methyltransferases specific for cytosine-N4 and adenine-N6. Moreover these enzymes have similar structures and active sites. Previously it has been demonstrated that the DNA-(adenine-N6)-methyltransferases M.EcoRV, M.EcoRI, E. coli dam and both domains of M.FokI also modify cytosine residues at the N4 position [Jeltsch et al., J. Biol. Chem. 274 (1999), 19538-19544]. Here we show that the cytosine-N4 methyltransferase M.PvuII, which modifies the second cytosine in CAGCTG sequences, also methylates adenine residues in CAGATG/CAGCTG substrates in which the target cytosine is replaced by adenine in one strand of the recognition sequence. Therefore, adenine-N6 and cytosine-N4 methyltransferases have overlapping target base specificities. These results demonstrate that the target base recognition by N-specific DNA methyltransferases is relaxed in many cases. Furthermore, it shows that the catalytic mechanisms of adenine-N6 and cytosine-N4 methyltransferases are very similar.  相似文献   

11.
DNA methylation is the most common form of DNA modification in prokaryotic and eukaryotic genomes. We have applied the method of single-molecule, real-time (SMRT®) DNA sequencing that is capable of direct detection of modified bases at single-nucleotide resolution to characterize the specificity of several bacterial DNA methyltransferases (MTases). In addition to previously described SMRT sequencing of N6-methyladenine and 5-methylcytosine, we show that N4-methylcytosine also has a specific kinetic signature and is therefore identifiable using this approach. We demonstrate for all three prokaryotic methylation types that SMRT sequencing confirms the identity and position of the methylated base in cases where the MTase specificity was previously established by other methods. We then applied the method to determine the sequence context and methylated base identity for three MTases with unknown specificities. In addition, we also find evidence of unanticipated MTase promiscuity with some enzymes apparently also modifying sequences that are related, but not identical, to the cognate site.  相似文献   

12.
Multispecific cytosine C5 DNA methyltransferases (MTases) methylate more than one specific DNA target. This is due to the presence of several target recognizing domains (TRDs) in these enzymes. Such TRDs form part of a variable centre in the MTase primary sequence, which separates conserved enzyme core sequences responsible for general steps in the methylation reaction. By deleting, rearranging and exchanging several TRDs of multispecific MTases, we demonstrate their modular character; they mediate target recognition independent of a particular TRD or core sequence context. We show also that multispecific MTases can accommodate inert material of non-MTase origin within their variable region without losing their activity. The remarkable plasticity with respect to the material that can be integrated into this region suggests that the enzyme core sequences preceding or following it form separable functional domains. In spite of the documented flexibility multispecific MTases could not be endowed with novel specificities by integration of putative TRDs of monospecific MTases, pointing to differences between multi- and monospecific MTases in the way their core and TRD sequences interact.  相似文献   

13.
14.
N6-METHYLADENINE (6-MeAde) and 5-methylcytosine occur as minor bases in bacterial and phage DNA1–7 and seem to result from the selective methylation of adenine and cytosine residues by specific DNA methylases8. Methylation is the final stage in DNA synthesis and is essential for the phenomenon of host modification of phages9–11; it is one of the mechanisms controlling DNA replication in the cell12, 13. A study of the distribution of minor bases in DNA is therefore important not only for the elucidation of the specificity and mechanism of action of DNA methylases but also for an understanding of the purpose of this methylation. We believe that in Escherichia coli, DNA methylase exerts its action on adenine residues in chain terminating triplets: 6-MeAde may serve as a signal for gene termination in this system.  相似文献   

15.
The DNMT1 target recognition domain resides in the N terminus   总被引:7,自引:0,他引:7  
DNA-cytosine-5-methyltransferase 1 (DNMT1) is the enzyme believed to be responsible for maintaining the epigenetic information encoded by DNA methylation patterns. The target recognition domain of DNMT1, the domain responsible for recognizing hemimethylated CGs, is unknown. However, based on homology with bacterial cytosine DNA methyltransferases it has been postulated that the entire catalytic domain, including the target recognition domain, is localized to 500 amino acids at the C terminus of the protein. The N-terminal domain has been postulated to have a regulatory role, and it has been suggested that the mammalian DNMT1 is a fusion of a prokaryotic methyltransferase and a mammalian DNA-binding protein. Using a combination of in vitro translation of different DNMT1 deletion mutant peptides and a solid-state hemimethylated substrate, we show that the target recognition domain of DNMT1 resides in the N terminus (amino acids 122-417) in proximity to the proliferating cell nuclear antigen binding site. Hemimethylated CGs were not recognized specifically by the postulated catalytic domain. We have previously shown that the hemimethylated substrates utilized here act as DNMT1 antagonists and inhibit DNA replication. Our results now indicate that the DNMT1-PCNA interaction can be disrupted by substrate binding to the DNMT1 N terminus. These results point toward new directions in our understanding of the structure-function of DNMT1.  相似文献   

16.
On the mechanism of DNA-adenine methylase   总被引:10,自引:0,他引:10  
Experiments were performed to determine whether EcoRI methylase catalyzes the transfer of the methyl group of S-adenosylmethionine (a) directly to the N6 of adenine in DNA or (b) initially to N1 to give N1-methyladenine followed by isomerization of the N1-methylamino and 6-NH2 to give N6-methyladenine (Dimroth rearrangement). A facile synthesis of highly enriched [6-15N]deoxyadenosine and a dodecamer substrate of EcoRI methylase with [6-15N]adenine in the methylation site are reported. In the product of EcoRI enzymatic methylation, all of the isotope remains at the N6 position of the N6-methyladenine product. It is concluded that, contrary to existing chemical precedent, the methylation occurs by direct transfer from S-adenosylmethionine to the N6 of adenine in DNA.  相似文献   

17.
18.
The amino acid sequence of mammalian DNA methyltransferase has been deduced from the nucleotide sequence of a cloned cDNA. It appears that the mammalian enzyme arose during evolution via fusion of a prokaryotic restriction methyltransferase gene and a second gene of unknown function. Mammalian DNA methyltransferase currently comprises an N-terminal domain of about 1000 amino acids that may have a regulatory role and a C-terminal 570 amino acid domain that retains similarities to bacterial restriction methyltransferases. The sequence similarities among mammalian and bacterial DNA cytosine methyltransferases suggest a common evolutionary origin. DNA methylation is uncommon among those eukaryotes having genomes of less than 10(8) base pairs, but nearly universal among large-genome eukaryotes. This and other considerations make it likely that sequence inactivation by DNA methylation has evolved to compensate for the expansion of the genome that has accompanied the development of higher plants and animals. As methylated sequences are usually propagated in the repressed, nuclease-insensitive state, it is likely that DNA methylation compartmentalizes the genome to facilitate gene regulation by reducing the total amount of DNA sequence that must be scanned by DNA-binding regulatory proteins. DNA methylation is involved in immune recognition in bacteria but appears to regulate the structure and expression of the genome in complex higher eukaryotes. I suggest that the DNA-methylating system of mammals was derived from that of bacteria by way of a hypothetical intermediate that carried out selective de novo methylation of exogenous DNA and propagated the methylated DNA in the repressed state within its own genome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
DNA (cytosine-5)-methyltransferase (DNA MeTase) establishes and maintains methylation patterns in the genome of higher eukaryotes. This enzyme has been purified, and the cDNA which encodes it has been cloned and sequenced. DNA MeTase appears to contain a large (1000 amino acid) N-terminal domain that contains potential metal-binding sites. This domain appears to contain a series of five to seven structural units of Mr about 20,000, since post-translational processing in vivo or partial proteolysis of the purified protein in vitro leads to the production of a series of catalytically active species differing in Mr by units of 20,000. The N-terminal domain is fused to a smaller (570 amino acid) C-terminal domain that is related to bacterial type II cytosine methyltransferases. The relevance of these findings for the biological function of DNA MeTase is discussed.  相似文献   

20.
DNA-[Adenine] Methylation in Lower Eukaryotes   总被引:3,自引:0,他引:3  
DNA methylation in lower eukaryotes, in contrast to vertebrates, can involve modification of adenine to N6-methyladenine (m6A). While DNA-[cytosine] methylation in higher eukaryotes has been implicated in many important cellular processes, the function(s) of DNA-[adenine] methylation in lower eukaryotes remains unknown. I have chosen to study the ciliate Tetrahymena thermophila as a model system, since this organism is known to contain m6A, but not m5C, in its macronuclear DNA. A BLAST analysis revealed an open reading frame (ORF) that appears to encode for the Tetrahymena DNA-[adenine] methyltransferase (MTase), based on the presence of motifs characteristic of the enzymes in prokaryotes. Possible biological roles for DNA-[adenine] methylation in Tetrahymena are discussed. Experiments to test these hypotheses have begun with the cloning of the gene. Orthologous ORFs are also present in three species of the malarial parasite Plasmodium. They are compared to one another and to the putative Tetrahymena DNA-[adenine] MTase. The gene from the human parasite P. falciparum has been cloned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号