首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

Background  

Characteristics derived from mutation and other mechanisms that are advantageous for survival are often preserved during evolution by natural selection. Some genes are conserved in many organisms because they are responsible for fundamental biological function, others are conserved for their unique functional characteristics. Therefore one would expect the rate of molecular evolution for individual genes to be dependent on their biological function. Whether this expectation holds for genes duplicated by whole genome duplication is not known.  相似文献   

2.

Background  

The role of gene duplication in the structural and functional evolution of genomes has been well documented. Analysis of complete rice (Oryza sativa) genome sequences suggested an ancient whole genome duplication, common to all the grasses, some 50-70 million years ago and a more conserved segmental duplication between the distal regions of the short arms of chromosomes 11 and 12, whose evolutionary history is controversial.  相似文献   

3.

Background  

The availability of newly sequenced vertebrate genomes, along with more efficient and accurate alignment algorithms, have enabled the expansion of the field of comparative genomics. Large-scale genome rearrangement events modify the order of genes and non-coding conserved regions on chromosomes. While certain large genomic regions have remained intact over much of vertebrate evolution, others appear to be hotspots for genomic breakpoints. The cause of the non-uniformity of breakpoints that occurred during vertebrate evolution is poorly understood.  相似文献   

4.

Background

Genome comparisons between closely related species often show non-conserved regions across chromosomes. Some of them are located in specific regions of chromosomes and some are even confined to one or more entire chromosomes. The origin and biological relevance of these non-conserved regions are still largely unknown. Here we used the genome of Fusarium graminearum to elucidate the significance of non-conserved regions.

Results

The genome of F. graminearum harbours thirteen non-conserved regions dispersed over all of the four chromosomes. Using RNA-Seq data from the mycelium of F. graminearum, we found weakly expressed regions on all of the four chromosomes that exactly matched with non-conserved regions. Comparison of gene expression between two different developmental stages (conidia and mycelium) showed that the expression of genes in conserved regions is stable, while gene expression in non-conserved regions is much more influenced by developmental stage. In addition, genes involved in the production of secondary metabolites and secreted proteins are enriched in non-conserved regions, suggesting that these regions could also be important for adaptations to new environments, including adaptation to new hosts. Finally, we found evidence that non-conserved regions are generated by sequestration of genes from multiple locations. Gene relocations may lead to clustering of genes with similar expression patterns or similar biological functions, which was clearly exemplified by the PKS2 gene cluster.

Conclusions

Our results showed that chromosomes can be functionally divided into conserved and non-conserved regions, and both could have specific and distinct roles in genome evolution and regulation of gene expression.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-191) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background  

The identification of sequence innovations in the genomes of mammals facilitates understanding of human gene function, as well as sheds light on the molecular mechanisms which underlie these changes. Although gene duplication plays a major role in genome evolution, studies regarding concerted evolution events among gene family members have been limited in scope and restricted to protein-coding regions, where high sequence similarity is easily detectable.  相似文献   

6.

Background  

Identification of homologous regions or conserved syntenies across genomes is one crucial step in comparative genomics. This task is usually performed by genome alignment softwares like WABA or blastz. In case of conserved syntenies, such regions are defined as conserved gene orders. On the gene order level, homologous regions can even be found between distantly related genomes, which do not align on the nucleotide sequence level.  相似文献   

7.

Background

A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats.

Results

Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence.

Conclusion

These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity.  相似文献   

8.

Background  

A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats.  相似文献   

9.

Background  

Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses.  相似文献   

10.

Background  

In addition to known protein-coding genes, large amounts of apparently non-coding sequence are conserved between the human and mouse genomes. It seems reasonable to assume that these conserved regions are more likely to contain functional elements than less-conserved portions of the genome.  相似文献   

11.

Background  

Protein evolution and protein classification are usually inferred by comparing protein cores in their conserved aligned parts. Structurally aligned protein regions are separated by less conserved loop regions, where sequence and structure locally deviate from each other and do not superimpose well.  相似文献   

12.

Background  

An important question in genome evolution is whether there exist fragile regions (rearrangement hotspots) where chromosomal rearrangements are happening over and over again. Although nearly all recent studies supported the existence of fragile regions in mammalian genomes, the most comprehensive phylogenomic study of mammals raised some doubts about their existence.  相似文献   

13.

Background  

Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops.  相似文献   

14.
15.

Background  

Insertions and deletions of DNA segments (indels) are together with substitutions the major mutational processes that generate genetic variation. Here we focus on recent DNA insertions and deletions in protein coding regions of the human genome to investigate selective constraints on indels in protein evolution.  相似文献   

16.

Background  

Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.  相似文献   

17.

Background  

Given the availability of full genome sequences, mapping gene gains, duplications, and losses during evolution should theoretically be straightforward. However, this endeavor suffers from overemphasis on detecting conserved genome features, which in turn has led to sequencing multiple eutherian genomes with low coverage rather than fewer genomes with high-coverage and more even distribution in the phylogeny. Although limitations associated with analysis of low coverage genomes are recognized, they have not been quantified.  相似文献   

18.
19.

Background  

The size of non-redundant functional genome can be an indicator of biological complexity of living organisms. Several positive feedback mechanisms including gene cooperation and duplication with subsequent specialization may result in the exponential growth of biological complexity in macro-evolution.  相似文献   

20.

Background  

Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号