首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
翠菊根系养分捕获形态塑性及其生理机制   总被引:1,自引:1,他引:0       下载免费PDF全文
董佳  牟溥 《植物生态学报》2012,36(11):1172-1183
为验证以下3个假设: 1) NO3 -和NH4 +及其不同供给方式显著影响根系生长; 2) NO3 -和NH4 +以及不同供给方式对根内激素含量影响显著; 3)根构型(1级根长、单位2级根上1级侧根密度(分枝强度)和1级根在2级根上的根间距)与根内激素(生长素(IAA)、脱落酸(ABA)和细胞分裂素(玉米素核苷+玉米素) (CK (ZR + Z))含量显著相关, 采用营养液培养方法, 使实验植物翠菊(Callistephus chinensis)在两种氮肥(NO3 -和NH4 +)、不同施氮浓度(NO3 -: 0.2、1.0和18.0 mmol·L -1; NH4 +: 0.2、4.0和20.0 mmol·L -1), 以及脉冲和稳定两种施用方式处理下生长。在处理35天后收获植物, 测定根系生物量、根系构型指标(根系1级根长、单位2级根上1级侧根数和1级根在2级根上的根间距)和根系中激素含量(IAA、ABA和CK (ZR + Z))。结果显示: 1)实验处理对根生物量和根系中IAA、ABA和CK (ZR + Z)含量均有不同程度的显著影响: 施用NH4 +使根生物量和根内IAA含量显著低于施用NO3 -; 高浓度NO3 -和NH4 +处理亦使根生物量和IAA降低; 相对于稳定处理, 脉冲施氮显著降低根生物量和根内IAA含量; NO3 -使根内CK (ZR + Z)含量显著高于施用NH4 +, 且与施氮浓度及施氮方式无关; NO3 -处理下, 高浓度使根内ABA含量提高, 且脉冲处理使ABA含量升高。NH4 +处理下, 高浓度使根内ABA含量降低, 而施氮方式对其没有显著影响。2)根构型因素与根内激素关系各异: 各激素与1级根间距无显著关系; IAA和CK (ZR + Z)与1级根长和侧根密度有显著回归关系。3)根构型因素与根生物量的关系是根生物量与1级根长和侧根密度有显著正回归关系, 与1级根间距无显著回归关系。实验结果表明翠菊根生长的 “反常”可能是由于其对脉冲高浓度NH4 +耐受阈值低所致。该研究通过实验建立了氮养分种类/供应方式通过改变激素、影响根构型而影响根生长的联系, 进一步探究了植物根养分捕获塑性机制。  相似文献   

2.
《植物生态学报》1958,44(7):782
丛枝菌根真菌(AMF)能与大多数陆生植物的根系形成共生体, 有助于宿主植物吸收养分。但营养胁迫下, 根系微生物对AMF与宿主植物间关系的影响少见报道。该研究假设: 在营养极度匮乏(如氮胁迫)环境下, AMF与宿主植物可能产生营养竞争, 而固氮菌的介入能够缓解两者对营养的竞争关系。为了验证这一假设, 该文探究了加拿大一枝黄花(Solidago canadensis)生长受限的氮浓度, 并在氮受限条件下检验了AMF、加拿大一枝黄花及固氮菌三者间的关系。结果表明: 低氮处理明显抑制了加拿大一枝黄花的地上生物量和总生物量, 尤其以0.025 mmol·L-1 N的氨态氮对加拿大一枝黄花的负影响更甚。在此氮浓度下, 单独添加AMF总体上都进一步抑制了加拿大一枝黄花的生长, 而固氮菌的添加在一定程度上提高了氮受限条件下AMF对宿主的根部侵染率及宿主植物生物量。这表明固氮菌能够缓和氮受限条件下AMF和加拿大一枝黄花间的营养竞争关系。研究结果加深了对外来植物在极度营养胁迫环境下与多种微生物互作的入侵机制的理解。  相似文献   

3.
侧根是植物吸收利用土壤养分的重要器官,其生长发育受内部遗传因子和外部环境矿质养分的影响.通过琼脂分层培养发现:局部供应NO-3可以诱导水稻( Oryza sativa L.)主根或不定根上侧根的生长.为研究旱种条件下NO-3对水稻侧根发育及其N吸收的影响,设置了3个蛭石培养实验:分根处理、全株缺N、全株供N处理.分根处理(一半根系供应3 mmol/L KNO3,另一半根系供应3 mmol/L KCl)结果表明:局部供应NO-3 能够促进水稻侧根生长.而在全株处理下,N饥饿诱导了侧根的伸长.水稻根系对NO-3的这两种反应都存在着显著的基因型差异.同时对地上部N浓度、可溶性总糖含量及N含量分析表明,这些生理指标在分根处理与全株加N处理中的差异均不显著,表明分根处理也能基本满足植株正常生长对N的需求.在分根处理中,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关,这表明在养分不均一的介质中,侧根长度对水稻N素吸收具有十分重要的作用.而在N素充足的条件下,两者之间的相关性并不显著,这暗示在养分充足的环境下,侧根长度可能并不是决定根系吸收N素的主要因素.  相似文献   

4.
细根在森林生态系统C分配和养分循环过程中发挥着重要作用, 但对地下细根与植物多样性之间关系的研究相对较少。该研究选择中亚热带从单一树种的杉木(Cunninghamia lanceolata)人工林到多树种的常绿阔叶林(青冈(Cyclobalanopsis glauca)-石栎(Lithocarpus glaber)林)的不同植物多样性梯度, 用根钻法采集细根并测定其生物量, 用Win-RHIZO 2005C根系分析系统测定细根形态参数, 以验证以下3个假设: 1)植物种类丰富度高的林分其细根生产存在“地下超产”现象; 2)根系空间生态位的分离水平是否随着植物多样性增多而增大? 3)细根是否通过形态可塑性对林木竞争做出响应?结果显示: 从单一树种的杉木人工林到植物种类较复杂的青冈-石栎常绿阔叶林, 0-30 cm土层的林分细根总生物量和活细根生物量均呈增加的趋势, 即细根总生物量为杉木林(305.20 g·m-2) <马尾松(Pinus massoniana)林(374.25 g·m-2) <南酸枣(Choerospondias axillaris)林(537.42 g·m-2) <青冈林(579.33 g·m-2), 活细根生物量为杉木林(268.74 g·m-2) <马尾松林(299.15 g·m-2) <南酸枣林(457.32 g·m-2) <青冈林(508.47 g·m-2), 各森林类型之间的细根总生物量差异显著(p < 0.05), 但活细根生物量差异不显著。土壤垂直剖面上, 除杉木林细根生物量随土层变化不显著外, 其他森林类型的活细根生物量和总细根生物量均随土层变化显著, 表层细根生物量随树种多样性的升高呈减小趋势, 据此推测树种间的生态位分离水平逐渐增大。植物多样性的不同对林分的细根形态及空间分布格局影响不显著, 细根形态可塑性对生物量变化响应不明显。  相似文献   

5.
硝态氮(NO3^—)对水稻侧根生长及其氮吸收的影响   总被引:6,自引:0,他引:6  
侧根是植物吸收利用土壤养分的重要器官 ,其生长发育受内部遗传因子和外部环境矿质养分的影响。通过琼脂分层培养发现 :局部供应NO-3 可以诱导水稻 (OryzasativaL .)主根或不定根上侧根的生长。为研究旱种条件下NO-3 对水稻侧根发育及其N吸收的影响 ,设置了 3个蛭石培养实验 :分根处理、全株缺N、全株供N处理。分根处理 (一半根系供应 3mmol/LKNO3,另一半根系供应 3mmol/LKCl)结果表明 :局部供应NO-3 能够促进水稻侧根生长。而在全株处理下 ,N饥饿诱导了侧根的伸长。水稻根系对NO-3 的这两种反应都存在着显著的基因型差异。同时对地上部N浓度、可溶性总糖含量及N含量分析表明 ,这些生理指标在分根处理与全株加N处理中的差异均不显著 ,表明分根处理也能基本满足植株正常生长对N的需求。在分根处理中 ,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关 ,这表明在养分不均一的介质中 ,侧根长度对水稻N素吸收具有十分重要的作用。而在N素充足的条件下 ,两者之间的相关性并不显著 ,这暗示在养分充足的环境下 ,侧根长度可能并不是决定根系吸收N素的主要因素  相似文献   

6.
《植物生态学报》2018,42(9):955
细根分解是森林生态系统土壤碳和养分的主要输入途径, 但目前人们对于影响细根分解的主要因素和细根分解模式的了解仍然很少。该研究采用根序划分等级方法, 将红松(Pinus koraiensis)落叶松(Larix gmelinii)水曲柳(Fraxinus mandschurica)和白桦(Betula platyphylla)细根组分前四级根划分为两个等级: 一级和二级根混合为低级根, 三级和四级根混合为高级根。利用埋袋法对东北地区4个树种不同根序细根进行连续4年的分解实验, 并对其分解速率以及影响因素进行研究。结果显示, 红松低级根和高级根分解系数分别为0.342和0.461, 落叶松依次分别为0.304和0.436, 水曲柳分别为0.450和0.555, 白桦为0.441和0.579。4个树种均显示低级根分解速率较慢, 而高级根分解速率较快。实验表明, 根系分解系数与酸不溶性物质(AUF)和非结构性碳水化合物(TNC)均具有显著相关性。出现上述结果的主要原因是低级根含有较多的AUF, 很难被分解, 以及含有较少的TNC, 为分解者提供能量较少。  相似文献   

7.
《植物生态学报》2018,42(5):573
凋落物是森林生态系统养分的重要来源, 叶片脱落时间是影响其分解的关键因素。东北温带森林中蒙古栎(Quercus mongolica)落叶时间较其他树种晚, 在山脊等贫瘠立地叶片甚至第二年春天才脱落。我们假设: 相对于其他树种, 蒙古栎叶片养分元素含量过高、再吸收时间长, 导致叶片延迟脱落。为验证假设, 除蒙古栎外, 选择了落叶时间居中的色木槭(Acer mono)和落叶较早的胡桃楸(Juglans mandshurica)为对象, 持续监测叶片从成熟至凋落过程中叶片养分元素含量, 包括大量元素: 氮(N)、磷(P)、钾(K)、钙(Ca)和镁(Mg), 微量元素: 铁(Fe)、铜(Cu)、锰(Mn)和锌(Zn); 并分析养分再吸收率。结果表明: 蒙古栎成熟叶养分元素含量介于对照树种之间; 凋落叶N、P和K含量低于对照树种, Fe和Mn含量高于对照树种, 其余元素含量介于对照树种之间。该结果不支持“蒙古栎叶片养分含量过高”假设。蒙古栎叶片N、P和K再吸收率高于对照树种, 再吸收率高低与其落叶时间完全一致; 叶片Cu和Zn再吸收率与对照树种无显著差异; 叶片其余元素未发生再吸收, 其累积率与对照树种无显著差异; 说明养分再吸收与养分含量无关, 可能与树种的种专一性相关, 可能会影响叶片脱落时间。由于蒙古栎多生长在贫瘠土壤, 其成熟叶无法积累更多养分; 为避免叶片脱落后养分进入土壤被其他物种利用, 将养分尽量回收储存于自身, 即蒙古栎叶片养分再吸收过程较长, 叶片脱落较晚。生长在极端贫瘠立地的蒙古栎叶片次年春天才落叶, 可能是由于再吸收一直在进行, 来不及脱落而保留至新生长季开始。落叶晚的树种养分再吸收率高、有利于自身养分保存, 更能适应贫瘠土壤, 反之亦然。  相似文献   

8.
帽儿山天然次生林20个阔叶树种细根形态   总被引:11,自引:1,他引:10       下载免费PDF全文
 细根在森林生态系统C分配和养分循环过程中发挥着重要作用。细根形态不但影响养分和水分的吸收, 而且与细根寿命和周转有密切关系。因此, 研究森林树种的细根形态对了解根系结构与功能、预测寿命与周转具有重要理论意义。该文根据细根分枝等级划分方法, 研究了东北帽儿山天然次生林20个阔叶树种1~5级根直径、根长和比根长等形态指标。结果表明, 20个树种中, 除5个树种1级根直径略大于2级和比根长略小于2级根外, 其余15个树种均表现为1级根直径和根长最小、比根长最高, 随着根序增加, 直径和根长增加, 而比根长降低。20个阔叶树种前3级根的累积根长均占前5级根总根长的80%以上。9个内生菌根侵染的树种的平均直径、根长和比根长均大于11个外生菌根侵染的树种。  相似文献   

9.
根周转是地下生态过程的主要驱动力, 根属性指征了物种生态策略, 根寿命与属性是理解生态系统碳氮循环和群落多样性的关键。目前对亚热带常绿阔叶林根周转等生态过程的直接观测资料缺乏。该研究对中亚热带江西樟树试验林场6个树种吸收细根动态进行了2年观测, 获取了2.8万张微根管照片, 分析了吸收细根寿命年际和季节变化特征及其与根形态属性的关系。结果显示: 1)亚热带6个树种间吸收细根寿命变异为4.6倍, 变异系数可达73%。中值寿命排序为: 红豆杉(Taxus wallichiana)(426天) >复羽叶栾树( Koelreuteria bipinnata)(155天) >竹柏( Nageia nagi)(145天) >樟( Cinnamomum camphora)(126天) >东京樱花( Cerasus yedoensis)(93天) >深山含笑( Michelia maudiae)(92天); 2)树木吸收细根寿命年际、季节变异较大, 可能是适应伏秋旱、雨热不同期、年际变化大的亚热带季风气候的结果; 3)吸收细根寿命与直径呈显著正相关关系, 与比根长呈显著负相关关系, 表明根的构建成本可以在一定程度上预测寿命。这些结果为预测亚热带地下生态过程、揭示亚热带常绿阔叶林碳氮循环、物种共存机制提供依据。  相似文献   

10.
植物主要依赖自身根系从土壤中获取矿质养分; 具有不同根形态的植物对于养分的吸收能力存在差异。丛枝菌根真菌(AMF)能与陆地植物根系形成共生关系, 帮助植物吸收矿质养分。但是, AMF对于植物根系养分吸收的促进效应是否会受根形态的影响还鲜有研究。该研究选取4种不同根形态基因型水稻(根毛缺陷突变体rhl1、侧根缺陷突变体iaa11、不定根缺失突变体arl1和野生型Kas)为研究对象, 设置2种施氮水平处理(低氮: 20 mg·kg-1氨氮; 高氮: 100 mg·kg-1氨氮), 利用稳定同位素15N示踪标记技术, 探究AMF和氮添加对不同根形态植物氮吸收的影响。研究结果发现, 相比低氮处理, 高氮处理下, rhl1、Kas、iaa11arl1的茎叶15N浓度分别提高了60%、72%、128%与118%, 说明氮添加显著促进了水稻氮吸收, 且iaa11arl1对氮添加的响应更强烈。在低氮水平下, AMF对rhl1、Kas、iaa11arl1氮吸收的平均效应值分别为17%、31%、42%、51%, 表明AMF对于植物氮吸收的促进效应受根形态影响, iaa11arl1对AMF的响应明显高于Kas与rhl1; 相较于低氮水平, 高氮水平下AMF对于不同根形态水稻氮吸收的促进效应都会显著降低, 表明氮添加削弱了AMF对植物氮吸收的促进效应。该研究阐明了4种不同根形态基因型水稻氮养分吸收存在显著差异, 其中氮吸收能力较弱的基因型水稻对AMF的响应更强, 该结果补充了植物与AMF在养分吸收上存在功能互补的控制实验证据。  相似文献   

11.
《植物生态学报》2021,44(12):1285
为了探讨人工林内优势乔木和林下灌草根际土壤氮矿化特征, 明确乔灌草根际土壤氮转化差异, 该研究以江西泰和千烟洲站区典型人工杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和湿地松(Pinus elliottii)林为对象, 在植被生长季初期(4月)和旺盛期(7月)分析3种人工林内乔木、优势灌木(檵木(Loropetalum chinense)、杨桐(Adinandra millettii)、格药柃(Eurya muricata))和草本(狗脊蕨(Woodwardia japonica)、暗鳞鳞毛蕨(Dryopteris atrata))根际土壤的净氮矿化速率、土壤化学性质及土壤微生物特征。结果发现: 1)物种、林型和取样季节显著影响了根际土壤净氮矿化速率(Nmin)、净铵化速率(Namm)和净硝化速率(Nnit)。马尾松和湿地松林内林下灌草根际土壤净氮矿化的季节敏感性高于乔木: 4月乔木根际土壤NminNamm显著高于大多数林下灌草, 而7月林下灌草根际土壤NminNamm显著提高, 与乔木不再具有显著差异, 与主成分综合得分方差分析的结果一致。一般情况下, 杉木林NminNnit显著高于马尾松林和湿地松林。7月净氮矿化显著高于4月。2)土壤铵态氮、硝态氮、全氮及土壤微生物量氮含量是影响根际土壤净氮矿化的主要因素。土壤化学性质对人工林根际土壤净氮矿化变异的贡献率为29.2%, 显著高于土壤微生物的解释率。充分考虑不同季节林下植被根际土壤的净氮矿化及其关键影响因素可为准确评估人工林生态系统养分循环状况提供重要支撑。  相似文献   

12.
入侵植物加拿大一枝黄花(Solidago canadensis)具有较强的钾(K)富集能力, 这可能和其对土壤微生物群落的改变有关。根际解钾菌能够将植物难以利用的矿物态钾转化为植物可以利用的可溶性钾, 而加拿大一枝黄花如何影响根际解钾菌多样性和解钾活性尚未明了。该研究以浙江省杭州湾湿地围垦区内自然生长的加拿大一枝黄花和其伴生本地植物白茅(Imperata cylindrica)为研究对象, 比较了加拿大一枝黄花和白茅体内及土壤中的钾含量水平, 钾供给水平对生物量积累的影响, 以及根际解钾菌的数量、多样性和解钾活性的差异。结果表明, 加拿大一枝黄花茎、叶中的钾含量均显著高于白茅, 分别是白茅的1.59和7.33倍; 加拿大一枝黄花和白茅的土壤全钾含量差异不显著, 速效钾含量在0-10 cm土层中差异显著、在10-20 cm土层中差异不显著。随着钾供应水平提高, 加拿大一枝黄花和白茅的生物量均显著增加。利用解钾培养基计数培养后发现, 加拿大一枝黄花根际解钾菌的数量是白茅的3.51倍。分离培养后将出现解钾圈的菌株进行鉴定, 利用解钾液体培养实验测定其解钾量, 发现从加拿大一枝黄花根际土中分离得到的15个解钾菌株中, 有9个具有高效解钾能力, 其处理液中K +含量较空白对照高出85.11%-192.54%, 其中菌株H2-20解钾能力最强, 解钾量为10.657 mg·L -1。加拿大一枝黄花根际解钾菌解钾作用显著高于白茅。经16S rDNA鉴定发现, 加拿大一枝黄花15个根际解钾菌株分属11个属, 其中有6个属已经被报道证实具有明显解钾能力。这些结果表明加拿大一枝黄花根际解钾菌数量较为丰富, 且大多具有较高解钾活性, 可能对其钾富集具有重要贡献。  相似文献   

13.
根系具有高度的形态和生理功能异质性, 在森林生态系统碳和养分循环中起重要作用。根系分枝的顺序构成根序,是根系最基本的构型特征, 根序代表根系不同的发育阶段。然而, 目前直接测定不同根序细根生理功能的研究很少。以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)的细根为研究对象, 使用气相氧电极测定不同根序细根的呼吸速率, 探讨根系呼吸速率与其形态、结构和组织氮浓度的关系。结果表明: 落叶松和水曲柳细根的直径、根长和维管束直径均随着根序的增加(1–5级)而增加, 而比根长、组织氮浓度和呼吸速率随着根序的增加而降低, 各根序之间差异显著(P < 0.05); 1级根比根长最大、皮层组织发达、组织氮浓度最高且呼吸速率也最高, 其呼吸速率分别为17.57 nmolO2·g–1·s–1(落叶松)和18.80 nmolO2·g–1·s–1(水曲柳), 比5级根分别高148%(落叶松)和124%(水曲柳); 并且, 落叶松根的呼吸速率几乎有96%与根系组织氮浓度相关, 而水曲柳根的呼吸速率则有89%与根系组织氮浓度相关。上述结果说明, 细根的形态和生理功能异质性是紧密相连的, 低级根的形态、结构决定其功能是吸收养分和水, 而高级根的形态、结构决定其功能是运输和贮存养分。  相似文献   

14.
套作棉根际与非根际土壤酶活性和养分的变化   总被引:22,自引:4,他引:18  
在棉麦两熟双高产条件下研究了棉花根际与非根际土壤酶活性和养分含量的变化.结果表明,套作棉土壤脲酶、蔗糖酶、蛋白酶及过氧化氢酶活性随生育进程的变化趋势与单作棉表现一致,但整个生育期套作棉根际与非根际土壤各种酶活性均明显高于单作棉.套作棉根际与非根际土壤养分含量在麦棉共生期低于单作棉或差异较小,而在麦收后则显著高于单作棉.套作棉土壤养分含量随生育进程的变化趋势与单作棉大体相同,但一些养分的吸收高峰晚于单作棉.无论套作棉还是单作棉,根际土壤酶活性和养分含量高于非根际.土壤各养分含量与土壤脲酶、蔗糖酶和蛋白酶活性呈显著(P=0.0,n=32)或极显著(P=0.01,n=32)相关,与土壤过氧化氢酶活性相关不显著.  相似文献   

15.
幼龄柠条细根现存量与环境因子的关系   总被引:8,自引:1,他引:7       下载免费PDF全文
以晋西北黄土高原区柠条(Caragana korshinskii)幼龄人工林为研究对象, 应用微根管技术(Minirhizotron technique)对林地100 cm土层范围的柠条细根生长动态进行了观测。以2007年生长季(5~9月)的根长密度(RLD, mm·cm-3)数据为基础, 对柠条细根现存量(RLDst, mm·cm-3)及其与环境因子(≥10 ℃积温、同期土壤积温、积降雨量和土壤水分等)的关系作了研究。结果表明, 40~90 cm土层是柠条细根的主要分布区和生长活跃区, 其细根占细根总量的59.7%。柠条细根现存量的季节变化特征为: 5月至9月上旬RLDst持续增加, 9月下旬RLDst略有降低。柠条细根现存量季节变化与≥10 ℃积温、同期土壤积温和积降雨量均存在极显著正相关关系。  相似文献   

16.
《植物生态学报》2021,44(11):1184
水淹和土壤养分是影响三峡库区消落带植物生长的主要环境因子。消落带不同高程的植物长期经历不同的淹水强度和土壤养分条件。该研究假设同一物种来自于消落带不同高程的植株可能产生性状分化, 从而对根部淹水和土壤养分变化具有不同的生长和繁殖响应策略。为了验证以上假设, 选取在三峡库区消落带高低高程均广泛分布的物种水蓼(Polygonum hydropiper)为研究对象, 采集自然种群的种子。在温室同质园条件下, 研究了根部水淹和土壤养分提升对高低高程水蓼植株生长和繁殖特性的影响。研究结果表明根部水淹显著或趋于显著降低了水蓼植株功能叶的叶长、叶宽、总分枝数、叶生物量、花生物量和总生物量; 低养分处理显著或趋于显著降低了水蓼植株的总节数、总分枝数、根生物量、花生物量和总生物量, 表明根部水淹和低土壤养分对水蓼的生长和繁殖能力具有抑制作用。同时, 根部水淹和土壤养分的交互作用显著影响植株的根生物量, 表明根部水淹条件下高土壤养分更有利于植株根生物量的积累。高高程植株的根生物量和叶生物量显著或趋于显著高于低高程植株, 而低高程植株的始花时间早于高高程植株, 且繁殖分配也显著高于高高程植株, 表明高低高程水蓼植株对资源的分配策略不同。该研究结果表明水蓼的生长和繁殖特性受根部水淹和土壤养分共同限制, 但对根部水淹条件下高土壤养分生境具有较好的适应性; 同时, 低高程植株可以通过调整其生长和繁殖特性以提高对所处生境胁迫的适应性。  相似文献   

17.
Response of fine roots to precipitation change: A meta-analysis   总被引:1,自引:0,他引:1       下载免费PDF全文
《植物生态学报》2018,42(2):164
细根对土壤水分含量变化十分敏感, 增加和减少降水直接影响土壤水分含量。为探索细根对降水变化的响应, 该文从48篇已发表的国内外研究论文中搜集到202组数据, 通过meta分析的方法揭示细根生物量、生产量、周转率、根长度密度、比根长及细根分解对增加和减少降水的一般响应规律, 用加权响应比评价降水对细根各指标的影响效应, 降水变化对细根分解的影响用土壤微生物生物量碳的响应比衡量。结果表明: 1)不同类型植物的细根对降水变化的响应程度不同, 灌木细根的响应强于乔木。2)细根各指标对降水变化的响应存在土层空间异质性, 并且降水变化量为50%时细根响应最显著。降水增加50%时, 显著增加20-40 cm土层的细根生物量和0-10 cm土层的细根比根长, 降水减少50%时, 显著减少20-40 cm土层的细根生产量和增加0-10 cm土层的细根根长度密度。3)降水变化实验持续时间的长短会影响细根的响应程度, 短期实验中细根通过形态适应对降水变化做出应对, 而长期实验中细根通过重新分配生物量对降水变化做出响应。4)增加降水促进了细根养分归还, 致使土壤微生物得到了充足的底物资源, 提高了自身活性, 使细根分解加快。  相似文献   

18.
树木细根生长与根际过程的关系十分密切。该研究仿生欧美杨107 (Populus × euramericana ‘Neva’)人工林根际土壤酚酸沉降与氮素有效性变化, 通过设置3种酚酸梯度(0X、0.5X、1.0X, X为田间土壤酚酸含量)与3种氮素水平(缺氮0 mmol·L-1、正常氮10 mmol·L-1、高氮20 mmol·L-1), 探究酚酸和氮素对欧美杨107细根形态的影响, 以期为阐明树木根系生长对根-土界面过程的响应奠定基础。结果表明: (1)在无酚酸(0X)环境中, 缺氮和高氮均可抑制欧美杨107细根生长, 尤其对1-3级细根的影响更为显著。比根长随氮素水平升高逐渐减小, 但其他细根特征并未呈现与氮素水平的线性关系。(2) 0.5X和1.0X酚酸梯度相比, 欧美杨107的1-2级细根直径和体积随酚酸浓度增加而显著增大(p < 0.05)。酚酸和氮素对杨树细根的影响存在交互作用, 1-2级细根直径、体积受酚酸的影响显著, 而4-5级细根长度、表面积受氮素影响显著。双因素方差分析结果表明, 酚酸和氮素对细根形态建成具有协同或拮抗效应。(3)主成分分析(PCA)和冗余分析(RDA)结果表明, 在酚酸和氮素交互效应下, 杨树1-3级、 4级、 5级细根之间具有显著的形态差异。第一主成分主要体现细根觅食性状特征, 可解释细根形态变异的60.9%的信息; 第二主成分主要体现细根形态构建特征, 可解释25.3%的信息。杨树细根形态变化与根序高度相关, N素影响杨树细根形态的主效应较酚酸更强。因此, 根际环境中酚酸累积和氮素有效性变化会影响杨树细根的形态构建和细根对水分、养分的吸收, 而氮素有效性是影响杨树细根生长的重要因素, 开展杨树人工林土壤养分管理是林分生产力长期维持的关键。  相似文献   

19.
《植物生态学报》2018,42(7):723
为了深入探讨人工林内不同植物根际效应的差异, 为人工林生态系统林下植被管理提供理论依据, 该研究以江西泰和千烟洲站区杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和湿地松(Pinus elliottii) 3种人工林(1985年前后营造)为研究对象, 测定林内乔木及其林下常见灌木檵木(Loropetalum chinense)、杨桐(Adinandra millettii)和格药柃(Eurya muricata)的根际和全土土壤碳、氮、磷含量及pH值, 比较不同林分类型下优势乔灌树种的根际效应。结果发现: (1)乔木根际土壤大部分化学性质指标显著高于或低于全土(p < 0.05), 而林下灌木根际土壤与全土土壤化学性质的差异与物种有关, 如檵木根际土壤大部分化学性质显著不同于全土, 而格药柃根际土壤大部分指标与全土无显著差异。(2)除硝态氮(NO3 --N)外, 林下灌木不同物种之间的根际效应有别, 具体表现为檵木pH值、铵态氮(NH4 +-N)、可溶性有机碳(DOC)、全氮(TN)、全碳(TC)、碳氮比(C/N)、有效磷(AP)和全磷(TP)的根际效应显著高于格药柃, TN、TC、C/N和AP的根际效应也显著高于杨桐, 但杨桐与格药柃间的根际效应无显著差异。(3)杉木的根际效应显著强于林下3种灌木; 马尾松和湿地松的根际效应与檵木无显著差异, 而马尾松的根际效应显著高于杨桐和格药柃, 湿地松的根际效应显著高于格药柃。该研究表明相对于林下灌木(尤其是格药柃), 乔木具有较强的根际效应, 暗示了乔木具有更高的养分捕获能力。但林下灌木与乔木根际效应的差异与灌木种类和林分类型有关。因此, 人工林林下植被管理除了考虑适量保留林下灌木外, 可依据人工林类型, 充分考虑灌木种类选择, 进而最大地发挥人工林生态系统的生产和生态功能。  相似文献   

20.
海拔变化是多环境因子的梯度效应,细根作为植物吸收水分与养分的重要器官,其性状特征在指示植物的生长和分布等方面意义重大.该研究以弓杠岭2500~3300 m海拔地的云杉(Picea asperata)细根为研究对象,采用根序分级法对云杉1~5级根序的生物量及细根形态(平均直径、比根长、根长密度、比表面积)进行测定,以明确...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号