首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
农林复合系统种间关系研究进展   总被引:20,自引:2,他引:20  
刘兴宇  曾德慧 《生态学杂志》2007,26(9):1464-1470
种间相互作用在很大程度上决定了农林复合系统的生产力和可持续性,理解种间相互作用是经营和管理农林复合系统的关键。地上部分相互作用主要包括复合系统组分对光的竞争与互利、小气候的改变对系统生产力的影响;地下部分相互作用主要包括复合系统组分对水分和养分资源的竞争与互利、固氮树种对系统生产力的影响以及化感作用。今后需加强不同立地条件下的不同农林复合系统种间关系的比较、农林复合系统组分的空间分布格局、化感作用以及农林复合系统种间关系模型等研究。  相似文献   

2.
植物根系养分捕获塑性与根竞争   总被引:7,自引:0,他引:7       下载免费PDF全文
王鹏  牟溥  李云斌 《植物生态学报》2012,36(11):1184-1196
为了更有效地从土壤中获取养分, 植物根系在长期的进化与适应中产生了一系列塑性反应, 以响应自然界中广泛存在的时空异质性。同时, 植物根系的养分吸收也要面对来自种内和种间的竞争。多种因素都会影响植物根竞争的结果, 包括养分条件、养分异质性的程度、根系塑性的表达等。竞争会改变植物根系的塑性反应, 比如影响植物根系的空间分布; 植物根系塑性程度差异也会影响竞争。已有研究发现根系具有高形态塑性和高生理塑性的植物在长期竞争过程中会占据优势。由于不同物种根系塑性的差异, 固定的对待竞争的反应模式在植物根系中可能并不存在, 其响应随竞争物种以及土壤环境因素的变化而变化。此外, 随着时间变化, 根系塑性的反应及其重要性也会随之改变。植物对竞争的反应可能与竞争个体之间的亲缘关系有关, 有研究表明亲缘关系近的植物可能倾向于减小彼此之间的竞争。根竞争对植物的生存非常重要, 但目前还没有研究综合考虑植物的各种塑性在根竞争中的作用。另外根竞争对群落结构的影响尚待深入的研究。  相似文献   

3.
土壤养分空间异质性与植物根系的觅食反应   总被引:46,自引:5,他引:41  
植物在长期进化过程中,为了最大限度地获取土壤资源,对养分的空间异质性产生各种可塑性反应.包括形态可塑性、生理可塑性、菌根可塑性等.许多植物种的根系在养分丰富的斑块中大量增生,增生程度种间差异较大,并受斑块属性(斑块大小、养分浓度)、营养元素种类和养分总体供应状况的影响.植物还通过调整富养斑块中细根的直径、分枝角、节问距以及空间构型来实现斑块养分的高效利用.根系的生理可塑性及菌根可塑性可能在一定程度上影响其形态可塑性.生理可塑性表现为处于不同养分斑块上的根系迅速调整其养分吸收速率,从而增加单位根系的养分吸收,对在时间上和空间上变化频繁的空间异质性土壤养分的利用具有重要意义,可在一定程度上弥补根系增生反应的不足.菌根可塑性目前研究较少,一些植物种的菌根代替细根实现在富养斑块中的增生.菌根增生的碳投入养分吸收效率较高、根系增生对增加养分吸收的作用较复杂,取决于养分离子在土壤中的移动性能以及是否存在竞争植物;对植物生长(竞争能力)的作用因种而异,一些敏感种由此获得生长效益,而其它一些植物种受影响较小.植物个体对土壤养分空间异质性反应能力和生长差异,影响其在群落中的地位和命运,最终影响群落组成及其结构.  相似文献   

4.
土壤养分分布具有高度空间异质性, 植物的根系觅养行为是其对土壤养分异质性的一种适应。不同植物为了适应养分异质性会产生不同的根系觅养行为, 通过调整自身的根系觅养范围、觅养精度和觅养速度来更好地吸收利用土壤中的养分。外来植物与本地植物的竞争是决定其成功入侵的重要因素, 土壤养分等环境因素会影响它们之间的竞争关系。近年来, 外来入侵植物的觅养行为逐渐受到人们的关注, 关于入侵植物根系觅养行为的研究成果陆续出现: (1)总体来看, 外来入侵植物具有较强的根系觅养能力, 但根系觅养范围与觅养精度之间的权衡关系还不确定; (2)营养异质性会影响入侵植物与本地植物之间的竞争, 反过来, 二者之间的竞争也会影响根系觅养行为对营养异质性的响应; (3)丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能够提高入侵植物的根系觅养能力, 外来植物入侵能够改变入侵植物对AMF的偏好性, 形成AMF对入侵的正反馈作用, 而本地植物与AMF的相互作用也会影响入侵植物的竞争力。未来还应加强营养异质环境下种间竞争和AMF共生对入侵植物根系觅养行为的影响机制研究, 以及全球变化背景下入侵植物根系觅养行为的变化与机制方面的研究, 可以更深入地认识外来植物的觅养行为在其成功入侵中的作用, 并为利用营养调控来防控入侵植物提供理论依据。  相似文献   

5.
食根动物是植物的主要危害者,植物与食根动物之间的相互作用一直备受关注.本文从食根动物与异质性土壤、根系的关系,以及食根动物对植物的影响等方面,探讨了食根动物与根系生物量的变化、再生能力、存活,植物化学物质与其他有机体之间的作用机理和食根动物对植物生理、种群动态、植物结构的影响.建议加强对植物控制食根动物取食时采取的对策、食根动物改变生态系统C、N循环的机制以及植物寄生性线虫存在的生态系统养分的动态变化等方面的研究.  相似文献   

6.
湿地植物生长模型的改进及其动态的计算机模拟分析   总被引:3,自引:1,他引:2  
湿地植被的恢复与人工调控是恢复生态学研究的热点问题之一,建立湿地大型植物生长的控制模型。能为此提供一种理论模式。在湿地植物群落中,植物种间的相互作用关系较为复杂,在植物生长的不同阶段显现为互利、竞争或相互独立。基于此我们对Shukla提出的湿地植物生长模型进行了改进.建立了一种能够反映种间复杂作用机制(包括互利与竞争)的新模型。以植物的生物量为描述变量,用统计方法确定了模型参数,对实例进行了计算机模拟与数值分析.并研究了植物生长系统的稳定性。结果表明:①新模型能有效地描述湿地植物种间互利或竞争作用.优于只考虑种间竞争作用的Shukla模型;②对植物生长过程的计算机模拟结果和图像显示,在较低生物量水平上.种间显现互利关系;在较高生物量水平上.种间发生竞争作用,竞争的结局为一种植物占优势,而另一种植物趋于灭亡.这些与实际观测结果是一致的;③对系统进行了稳定性分析;④根据数值模拟结果,提出了湿地恢复的人工调控对策与建议。  相似文献   

7.
AM 真菌和枯落物互作下两种喀斯特植物种间竞争较种内竞争更能促进植物养分利用 枯落物是植物养分获取和土壤养分转化的关键载体。丛枝菌根(Arbuscular mycorrhizae, AM)对植物养分摄取的影响已被广泛认知。然而,在养分亏缺的喀斯特生境中,不同竞争方式的植物如何通过AM真菌和枯落物利用养分尚不清楚。本研究对两种喀斯特适生植物构树(Broussonetia papyrifera)和云贵鹅耳枥(Carpinus pubescens)进行种内竞争和种  间竞争种植处理,并通过幼套球 囊霉(Glomus etunicatum)接种或不接种处理,以及土壤中添加或不添加两物种叶片混合枯落物处理,测定了植物生物量以及氮、磷、钾浓度等指标,研究植物的生长和养分利用。研究结果表明,AM真菌对两种植物养分摄取影响不同,AM真菌显著提高了种内和种间竞争下构树的养分摄取量,但降低了云贵鹅耳枥的养分摄取量。种间竞争下接种AM真菌,枯落物添加促进了云贵鹅耳枥对氮的摄取,抑制了构树对氮的摄取。接种AM真菌和添加枯落物条件下,种间竞争的构树对氮、磷和钾的摄取量及云贵鹅耳枥对氮的摄取量均高于种内竞争;种间竞争下两物种养分竞争力呈现明显差异,即构树对磷和钾养分竞争力显著提高,对氮则不显著;云贵鹅耳枥仅对钾的养分竞争力显著降低,对氮和磷则无显著影响。这些结果说明,在AM真菌与枯落物相互作用下,两种喀斯特植物种间竞争较种内竞争更能促进植物养分利用。  相似文献   

8.
植物间的相互作用对种群动态和群落结构有着重要的影响。大量的野外实验已经揭示了正相互作用(互利)在群落中的普遍存在及其重要性。为了弥补野外实验方法的不足, 模型方法被越来越多地应用于正相互作用及其生态学效应的研究中。该文基于个体模型研究, 探讨了植物间正相互作用对种群动态和群落结构的影响。介绍了植物间正相互作用的定义和发生机制、植物间相互作用与环境梯度的关系。正相互作用是指发生在相邻的植物个体之间, 至少对其中一个个体有益的相互作用。植物通过直接(生境改善或资源富集)或间接(协同防御等)作用使局部环境有利于邻体而发生正相互作用。胁迫梯度假说认为互利的强度或重要性随着环境胁迫度的增加而增加, 但是越来越多的经验研究认为胁迫梯度假说需要改进。以网格模型和影响域模型为例, 介绍了基于个体的植物间相互作用模型方法。基于个体模型, 对近年来国内外正相互作用对种群时间动态(如生物量-密度关系)、空间分布格局和群落结构(如群落生物量-物种丰富度关系)影响的研究进行了总结。指出未来的研究应集中在对正相互作用概念和机制的理解, 新的模型, 新的种群、群落, 甚至生态系统问题, 以及在全球变化背景下进行相关的研究。  相似文献   

9.
植物根系分泌物主要生态功能研究进展   总被引:1,自引:0,他引:1  
根系分泌物在植物根系-土壤-微生物互作过程及其生态反馈机制中发挥重要作用。在植物根际复杂网络互作过程中, 根系分泌物被认为是“根际对话”的媒介, 其在调控植物适应微生境、缓解根际养分竞争及构建根际微生物群落结构方面意义重大。该文结合国内外该领域主要研究成果, 综述了根系分泌物对植物生长、土壤微生物特性及土壤养分循环的影响, 并展望了未来根系分泌物的研究方向。  相似文献   

10.
土壤养分异质性在自然界中普遍存在。土壤养分异质性对克隆植物生长繁殖有一定影响,但耦合竞争对入侵植物和本土植物生长繁殖影响的研究却相对匮乏。以入侵克隆植物互花米草和本土克隆植物芦苇为研究对象,通过温室控制实验模拟设置了土壤养分同质和养分异质处理(保证两种土壤的总养分含量相同),交叉3种定植模式(实验容器内单植入侵种6株,单植本土种6株以及两物种各3株交替种植),探究土壤养分异质性和种间竞争对入侵种互花米草和本土种芦苇生长繁殖的影响。结果表明:土壤养分异质性显著降低了互花米草的单株叶片数,而增加了其单株节间长以及芦苇的单株根状茎长;种间竞争模式下,互花米草的单株分株数,以及两种植物的单株节间长、根状茎节数和根状茎长都显著高于单植模式,而芦苇的单株地上生物量、叶生物量、茎生物量都显著低于单植模式;土壤养分异质性和种间竞争对互花米草单株的叶片数和茎生物量产生了显著的交互作用,而对芦苇各指标无显著影响。这些结果说明,土壤养分异质性可以影响互花米草与芦苇的种间竞争关系。  相似文献   

11.
Positive Interactions: Crucial Organizers in a Plant Community   总被引:4,自引:0,他引:4  
For more than a century, ecologists have concentrated on competition as a crucial process for community organization. However, more recent experimental investigations have uncovered the striking Influence of positive Interactions on the organization of plant communities. Complex combinations of competition and positive interactions operating simultaneously among plant species seem to be widespread In nature. In the present paper, we reviewed the mechanism and ecological importance of positive Interactions In plant communities, emphasizing the certainties and uncertainties that have made It an attractive area of research. Positive Interactions, or facilitation, occur when one species enhances the survival, growth, or richness of another. The Importance of facilitation in plant organization increases with ablotlc stress and the relative Importance of competition decreases. Only by combining plant interactions and the many fields of biology can we fully understand how and when the positive Interactions occur.  相似文献   

12.
The changes in plant–plant interactions along environmental gradients have been a focus of recent ecological research. It has been suggested that both above‐ and below‐ground competition and their interplay vary along gradients, but few studies have investigated this idea, and in most cases, the role of facilitation has not been considered, despite its importance in high stress environments. Here we used two‐layer ‘zone‐of‐influence’ models to simulate the effects of facilitation, size‐asymmetry of competition, abiotic stress, resource availability and the balance of root–shoot growth on shoot and root interactions and their interplay along an environmental gradient. In the absence of facilitation, shoot and total competition became weaker, while root competition and the interplay between shoot and root competition were unchanged under increasing stress when root competition was completely symmetric. In contrast, shoot, root, total interactions and the interplay between shoot and root interactions were all negative, and they increased with increasing stress when root competition was size‐symmetric. When facilitation was included in the models, net effects of shoot, root, total interactions and the interplay of root–shoot interactions were very different from those without facilitation, and many were positive under highly stressful conditions. The type of stress (non‐resource or resource) did not significantly influence the simulation results. Our study provides an alternative interpretation of the interplay between above‐ and below‐ground plant–plant interactions across an environmental gradient.  相似文献   

13.
The speed and slope of plant self‐thinning are all affected by plant–plant interactions across environmental gradients. Possible mechanisms driving the self‐thinning dynamics include the relative strength of root versus shoot competition, and the interplay between competition and facilitation. Although these mechanisms often act in concert, their relative importance has not yet been fully explored. We used both a one‐layer and a two‐layer zone‐of‐influence (ZOI) model to examine how competition and facilitation drive self‐thinning across stress gradients. As a development of the traditional ZOI model, the two‐layer version explicitly models shoot and root growth and neighbor interactions, and thus the overall size‐symmetry of competition is regulated by the relative strength of root versus shoot competition. One‐layer model simulations revealed that increasingly asymmetric competition accelerated thinning, and steepened (slope ranged from about –1 to –4/3) and lowered self‐thinning lines. Stress slowed down density‐dependent mortality considerably when competition was not completely symmetric. Stress significantly decreased the self‐thinning intercept, while facilitation simply counteracted stress effects. Both stress and facilitation showed little effect on the slope. In the two‐layer model, both stress and facilitation affected mortality in the same way as in the one‐layer version when competition was not completely symmetric. Different from the one‐layer model, the two‐layer version showed that the effects of stress and facilitation on the self‐thinning slope were mediated by the asymmetry of competition. As stress increased, the overall asymmetry of competition shifted from asymmetric to symmetric due to increased relative strength of root competition. High stress thus dramatically flattened self‐thinning lines, whereas the inclusion of facilitation counteracted stress and led to steeper self‐thinning lines. Our two‐layer model is based on the current knowledge of plant–plant interactions, and better represents ecological realities. It can help elaborate experiments for testing the role of competition and facilitation in driving plant population dynamics.  相似文献   

14.
Biotic interactions play an important role in ecosystem function and structure in the face of global climate change. We tested how plant–plant interactions, namely competition and facilitation among grassland species, respond to extreme drought and heavy rainfall events. We also examined how the functional composition (grasses, forbs, legumes) of grassland communities influenced the competition intensity for grass species when facing extreme events. We exposed experimental grassland communities of different functional compositions to either an extreme single drought event or to a prolonged heavy rainfall event. Relative neighbour effect, relative crowding and interaction strength were calculated for five widespread European grassland species to quantify competition. Single climatic extremes caused species specific shifts in plant–plant interactions from facilitation to competition or vice versa but the nature of the shifts varied depending on the community composition. Facilitation by neighbouring plants was observed for Arrhenatherum elatius when subjected to drought. Contrarily, the facilitative effect of neighbours on Lotus corniculatus was transformed into competition. Heavy rainfall increased the competitive effect of neighbours on Holcus lanatus and Lotus corniculatus in communities composed of three functional groups. Competitive pressure on Geranium pratense and Plantago lanceolata was not affected by extreme weather events. Neither heavy rainfall nor extreme drought altered the overall productivity of the grassland communities. The complementary responses in competition intensity experienced by grassland species under drought suggest biotic interactions as one stabilizing mechanism for overall community performance. Understanding competitive dynamics under fluctuating resources is important for assessing plant community shifts and degree of stability of ecosystem functions.  相似文献   

15.
Andrew Wilby  Moshe Shachak 《Oikos》2004,106(2):209-216
Compensatory population dynamics among species stabilise aggregate community variables. Inter-specific competition is thought to be stabilising as it promotes asynchrony among populations. However, we know little about other inter-specific interactions, such as facilitation and granivory. Such interactions are also likely to influence population synchrony and community stability, especially in harsh environments where they are thought to have relatively strong effects in plant communities. We use a manipulative experiment to test the effects of granivores (harvester ants) and nurse plants (dwarf shrubs) on annual plant community dynamics in the Negev desert, Israel. We present evidence for weak and inconsistent effects of harvester ants on plant abundance and on population and community stability. By contrast, we show that annual communities under shrubs were more species rich, had higher plant density and were temporally less variable than communities in the inter-shrub matrix. Species richness and plant abundance were also more resistant to drought in the shrub under-storey compared with the inter-shrub matrix, although population dynamics in both patch types were synchronised. Hence, we show that inter-specific interactions other than competition affect community stability, and that hypothesised mechanisms linking compensatory dynamics and community stability may not operate to the same extent in arid plant communities.  相似文献   

16.
Question. Competitive and facilitative interactions among plant species in different abiotic environments potentially link productivity, vegetation structure, species composition and functional diversity. We investigated these interactions among four alpine communities along an environmental productivity gradient in a generally harsh climate. We hypothesised that the importance of competition would be higher in more productive sites. Location. Mt. M. Khatipara (43°27′N, 41°41′E, altitude 2750 m), NW Caucasus, Russia. Communities ranged from low‐productivity alpine lichen heath (ALH) and snowbed communities (SBC), to intermediate productivity Festuca grassland (FVG), and high‐productivity Geranium‐Hedysarum meadow (GHM). Methods. We quantified the relative influence of competition and facilitation on community structure by expressing biomass of target species within each natural community proportionally to biomass of the species in a “null community” with experimental release from interspecific competition by removing all other species (for 6 years). An overall index of change in community composition due to interspecific interactions was calculated as the sum of absolute or proportional differences of the component species. Results. Species responses to neighbour removal ranged from positive to neutral. There was no evidence of facilitation among the selected dominant species. As expected, competition was generally most important in the most productive alpine community (GHM). The intermediate position for low‐productivity communities of stressful environments (ALH, SBC) and the last position of intermediately productive FVG were unexpected. Conclusions. Our results appear to support the Fretwell‐Oksanen hypothesis in that competition in communities of intermediate productivity was less intense than in low‐ or high‐productive communities. However, the zero net effect of competition and facilitation in FVG might be the result of abiotic stress due to strong sun exposure and high soil temperatures after neighbour removal. Thus, non‐linear relationships between soil fertility, productivity and different abiotic stresses may also determine the balance between competition and facilitation.  相似文献   

17.
A humped-back relationship between species richness and community biomass has frequently been observed in plant communities, at both local and regional scales, although often improperly called a productivity-diversity relationship. Explanations for this relationship have emphasized the role of competitive exclusion, probably because at the time when the relationship was first examined, competition was considered to be the significant biotic filter structuring plant communities. However, over the last 15 years there has been a renewed interest in facilitation and this research has shown a clear link between the role of facilitation in structuring communities and both community biomass and the severity of the environment. Although facilitation may enlarge the realized niche of species and increase community richness in stressful environments, there has only been one previous attempt to revisit the humped-back model of species richness and to include facilitative processes. However, to date, no model has explored whether biotic interactions can potentially shape both sides of the humped-back model for species richness commonly detected in plant communities. Here, we propose a revision of Grime's original model that incorporates a new understanding of the role of facilitative interactions in plant communities. In this revised model, facilitation promotes diversity at medium to high environmental severity levels, by expanding the realized niche of stress-intolerant competitive species into harsh physical conditions. However, when environmental conditions become extremely severe the positive effects of the benefactors wane (as supported by recent research on facilitative interactions in extremely severe environments) and diversity is reduced. Conversely, with decreasing stress along the biomass gradient, facilitation decreases because stress-intolerant species become able to exist away from the canopy of the stress-tolerant species (as proposed by facilitation theory). At the same time competition increases for stress-tolerant species, reducing diversity in the most benign conditions (as proposed by models of competition theory). In this way our inclusion of facilitation into the classic model of plant species diversity and community biomass generates a more powerful and richer predictive framework for understanding the role of plant interactions in changing diversity. We then use our revised model to explain both the observed discrepancies between natural patterns of species richness and community biomass and the results of experimental studies of the impact of biodiversity on the productivity of herbaceous communities. It is clear that explicit consideration of concurrent changes in stress-tolerant and competitive species enhances our capacity to explain and interpret patterns in plant community diversity with respect to environmental severity.  相似文献   

18.
Biotic interactions assembling plant communities can be positive (facilitation) or negative (competition) and operate simultaneously. Facilitative interactions and posterior competition are among the mechanisms triggering succession, thus representing a good scenario for ecological restoration. As distantly related species tend to have different phenotypes, and therefore different ecological requirements, they can coexist, maximizing facilitation and minimizing competition. We suggest including phylogenetic relatedness together with phenotypic information as a predictor for the net effects of the balance between facilitation and competition in nurse-based restoration experiments. We quantify, by means of a Bayesian meta-analysis of nurse-based restoration experiments performed worldwide, the importance of phylogenetic relatedness and life-form disparity in the survival, growth and density of facilitated plants. We find that the more similar the life forms of neighbouring plants are the greater the positive effect of phylogenetic distance is on survival and density. This result suggests that other characteristics beyond life form are also contained in the phylogeny, and the larger the phylogenetic distance, the less is the niche overlap, and therefore the less is the competition. As a general rule, we can maximize the success of the nurse-based practices by increasing life-form disparity and phylogenetic distances between the neighbour and the facilitated plant.  相似文献   

19.
Scale-dependent interactions and community structure on cobble beaches   总被引:4,自引:0,他引:4  
Recent theory suggests that scale-dependent interaction between facilitation and competition can generate spatial structure in ecological communities. The application of this hypothesis, however, has been limited to systems with little underlying heterogeneity. We evaluated this prediction in a plant community along an intertidal stress gradient on cobble beaches in Rhode Island, USA. Prior studies have shown that Spartina alterniflora facilitates a forb-dominated community higher in the intertidal by modifying the shoreline environment. We tested the hypothesis that, at a smaller scale, Spartina competitively excludes forb species, explaining their marked absence within the lower Spartina zone. Transplant experiments showed forb species grow significantly better in the Spartina zone when neighbours were removed. Removal of the Spartina canopy led to a massive emergence of annual forbs, showing that competition limits local occupation. These findings indicate that interaction of large-scale facilitation and small-scale competition drives plant zonation on cobble beaches. This study is the first to provide empirical evidence of scale-dependent interactions between facilitation and competition spatially structuring communities in heterogeneous environments.  相似文献   

20.
Positive interactions among plants   总被引:3,自引:0,他引:3  
Experimental evidence for positive interactions, or facilitation, among plants has increased markedly during the last 10 years. Experiments documenting facilitation have been conducted in many diverse ecological systems, which suggests that positive interactions may be fundamental processes in plant communities. Here, I review the evidence for facilitation, the mechanisms by which facilitation operates, and the effects facilitation has on community structure. Facilitative mechanisms may act simultaneously with resource competition or allelopathy, and the overall effect of one species on another may be the product of multiple, complex interactions. Positive interactions may also determine community spatial patterns, permit coexistence, enhance diversity and productivity, and drive community dynamics. Once viewed as anecdotal and idiosyncratic, facilitation is now contributing to a more complete understanding of community structure and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号