首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prethrombin-2 is the immediate zymogen precursor of the clotting enzyme thrombin, which is generated upon cleavage at R15 and separation of the A chain and catalytic B chain. The X-ray structure of prethrombin-2 determined in the free form at 1.9 ? resolution shows the 215-217 segment collapsed into the active site and occluding 49% of the volume available for substrate binding. Remarkably, some of the crystals harvested from the same crystallization well, under identical solution conditions, diffract to 2.2 ? resolution in the same space group but produce a structure in which the 215-217 segment moves >5 ? and occludes 24% of the volume available for substrate binding. The two alternative conformations of prethrombin-2 have the side chain of W215 relocating >9 ? within the active site and are relevant to the allosteric E*-E equilibrium of the mature enzyme. Another unanticipated feature of prethrombin-2 bears on the mechanism of prothrombin activation. R15 is found buried within the protein in ionic interactions with E14e, D14l, and E18, thereby making its exposure to solvent necessary for proteolytic attack and conversion to thrombin. On the basis of this structural observation, we constructed the E14eA/D14lA/E18A triple mutant to reduce the level of electrostatic coupling with R15 and promote zymogen activation. The mutation causes prethrombin-2 to spontaneously convert to thrombin, without the need for the snake venom ecarin or the physiological prothrombinase complex.  相似文献   

2.
Niu W  Chen Z  Gandhi PS  Vogt AD  Pozzi N  Pelc LA  Zapata F  Di Cera E 《Biochemistry》2011,50(29):6301-6307
Protein allostery is based on the existence of multiple conformations in equilibrium linked to distinct functional properties. Although evidence of allosteric transitions is relatively easy to identify by functional studies, structural detection of a pre-existing equilibrium between alternative conformations remains challenging even for textbook examples of allosteric proteins. Kinetic studies show that the trypsin-like protease thrombin exists in equilibrium between two conformations where the active site is either collapsed (E*) or accessible to substrate (E). However, structural demonstration that the two conformations exist in the same enzyme construct free of ligands has remained elusive. Here we report the crystal structure of the thrombin mutant N143P in the E form, which complements the recently reported structure in the E* form, and both the E and E* forms of the thrombin mutant Y225P. The side chain of W215 moves 10.9 ? between the two forms, causing a displacement of 6.6 ? of the entire 215-217 segment into the active site that in turn opens or closes access to the primary specificity pocket. Rapid kinetic measurements of p-aminobenzamidine binding to the active site confirm the existence of the E*-E equilibrium in solution for wild-type and the mutants N143P and Y225P. These findings provide unequivocal proof of the allosteric nature of thrombin and lend strong support to the recent proposal that the E*-E equilibrium is a key property of the trypsin fold.  相似文献   

3.
Isetti G  Maurer MC 《Biochemistry》2007,46(9):2444-2452
In the last stages of coagulation, thrombin helps to activate Factor XIII. The resultant transglutaminase introduces covalent cross-links into fibrin thus promoting clot stability. To better understand the roles of individual thrombin residues in recognition and hydrolysis of the Factor XIII activation peptide, mutations within thrombin's aryl and apolar binding site were explored. The thrombin mutants W215A, E217A, W215A/E217A, L99A, and I174A were examined through HPLC kinetics against the substrates FXIII (28-41) V34 AP and FXIII (28-41) V34L AP. Several mutants responded differently to FXIII (28-41) V34 AP vs the cardioprotective V34L AP. W215 provides an important platform for binding and directing FXIII APs for proper hydrolysis. Loss of this platform leads to decreases in kinetics, particularly to the kcat of FXIII V34L AP. E217 also plays a supporting role, but the E217A mutation is not as detrimental as W215A. W215A/E217A is unfavorable for both activation peptides and its coupling effect has been characterized. This mutant can readily bind the peptides but cannot orient them for effective hydrolysis. Kinetic studies with I174A indicate that this thrombin residue is more crucial for interactions with the larger V34L AP segment. The L99A mutation causes deleterious effects to binding and hydrolysis of both APs. The V34L, however, is able to partially compensate for the loss perhaps by increasing contact within the aryl and apolar sites. Understanding how specific FXIII and thrombin residues participate in binding and control hydrolysis may lead to the design of coagulation enzymes whose degree of activation and optimal target site can be controlled.  相似文献   

4.
Crystal structure of the anticoagulant slow form of thrombin   总被引:3,自引:0,他引:3  
Using the thrombin mutant R77aA devoid of the site of autoproteolytic degradation at exosite I, we have solved for the first time the structure of thrombin free of any inhibitors and effector molecules and stabilized in the Na(+)-free slow form. The slow form shows subtle differences compared with the currently available structures of the Na(+)-bound fast form that carry inhibitors at the active site or exosite I. The most notable differences are the displacement of Asp-189 in the S1 specificity pocket, a downward shift of the 190-193 strand, a rearrangement of the side chain of Glu-192, and a significant shift in the position of the catalytic Ser-195 that is no longer within H-bonding distance from His-57. The structure of the slow form explains the reduced specificity toward synthetic and natural substrates and suggests a molecular basis for its anticoagulant properties.  相似文献   

5.
Thrombin is the ultimate protease of the blood clotting cascade and plays a major role in its own regulation. The ability of thrombin to exhibit both pro- and anti-coagulant properties has spawned efforts to turn thrombin into an anticoagulant for therapeutic purposes. This quest culminated in the identification of the E217K variant through scanning and saturation mutagenesis. The antithrombotic properties of E217K thrombin are derived from its inability to convert fibrinogen to a fibrin clot while maintaining its thrombomodulin-dependent ability to activate the anticoagulant protein C pathway. Here we describe the 2.5-A crystal structure of human E217K thrombin, which displays a dramatic restructuring of the geometry of the active site. Of particular interest is the repositioning of Glu-192, which hydrogen bonds to the catalytic Ser-195 and which results in the complete occlusion of the active site and the destruction of the oxyanion hole. Substrate binding pockets are further blocked by residues previously implicated in thrombin allostery. We have concluded that the E217K mutation causes the allosteric inactivation of thrombin by destabilizing the Na(+) binding site and that the structure thus may represent the Na(+)-free, catalytically inert "slow" form.  相似文献   

6.
Administration of the thrombin mutant W215A/E217A (WE), rationally designed for selective activation of the anticoagulant protein C, elicits safe and potent anticoagulant and antithrombotic effects in a baboon model of platelet-dependent thrombosis. The lowest dose of WE tested (0.011 mg/kg bolus) reduced platelet thrombus accumulation by 80% and was at least as effective as the direct administration of 40-fold more (0.45 mg/kg bolus) activated protein C. WE-treated animals showed no detectable hemorrhage or organ failure. No procoagulant activity could be detected for up to 1 week in baboon plasma obtained following WE administration. These results show that engineered thrombin derivatives that selectively activate protein C may represent useful therapeutic agents for the treatment of thrombotic disorders.  相似文献   

7.
Thrombin acts as a procoagulant when it cleaves fibrinogen and promotes the formation of a fibrin clot and functions as an anticoagulant when it activates protein C with the assistance of the cofactor thrombomodulin. The dual function of thrombin in the blood poses the challenge to turn the enzyme into a potent anticoagulant by selectively abrogating fibrinogen cleavage. Using functional and structural data, we have rationally designed a thrombin mutant, W215A/E217A, that cleaves fibrinogen with a value of k(cat)/K(m) about 20,000-fold slower than wild-type but activates protein C in the presence of thrombomodulin with a specificity comparable with wild-type. This mutant demonstrates for the first time that the relative specificity of thrombin toward fibrinogen and protein C can be completely reversed.  相似文献   

8.
Little is known on the role of disulfide bonds in the catalytic domain of serine proteases. The Cys-191-Cys-220 disulfide bond is located between the 190 strand leading to the oxyanion hole and the 220-loop that contributes to the architecture of the primary specificity pocket and the Na+ binding site in allosteric proteases. Removal of this bond in thrombin produces an approximately 100-fold loss of activity toward several chromogenic and natural substrates carrying Arg or Lys at P1. Na+ activation is compromised, and no fluorescence change can be detected in response to Na+ binding. A 1.54-A resolution structure of the C191A/C220A mutant in the free form reveals a conformation similar to the Na+-free slow form of wild type. The lack of disulfide bond exposes the side chain of Asp-189 to solvent, flips the backbone O atom of Gly-219, and generates disorder in portions of the 186 and 220 loops defining the Na+ site. This conformation, featuring perturbation of the Na+ site but with the active site accessible to substrate, offers a possible representation of the recently identified E* form of thrombin. Disorder in the 186 and 220 loops and the flip of Gly-219 are corrected by the active site inhibitor H-D-Phe-Pro-Arg-CH(2)Cl, as revealed by the 1.8-A resolution structure of the complex. We conclude that the Cys-191-Cys-220 disulfide bond confers stability to the primary specificity pocket by shielding Asp-189 from the solvent and orients the backbone O atom of Gly-219 for optimal substrate binding. In addition, the disulfide bond stabilizes the 186 and 220 loops that are critical for Na+ binding and activation.  相似文献   

9.
The activating effect of Na(+) on thrombin is allosteric and depends on the conformational transition from a low activity Na(+)-free (slow) form to a high activity Na(+)-bound (fast) form. The structures of these active forms have been solved. Recent structures of thrombin obtained in the absence of Na(+) have also documented inactive conformations that presumably exist in equilibrium with the active slow form. The validity of these inactive slow form structures, however, is called into question by the presence of packing interactions involving the Na(+) site and the active site regions. Here, we report a 1.87A resolution structure of thrombin in the absence of inhibitors and salts with a single molecule in the asymmetric unit and devoid of significant packing interactions in regions involved in the allosteric slow --> fast transition. The structure shows an unprecedented self-inhibited conformation where Trp-215 and Arg-221a relocate >10A to occlude the active site and the primary specificity pocket, and the guanidinium group of Arg-187 penetrates the protein core to fill the empty Na(+)-binding site. The extreme mobility of Trp-215 was investigated further with the W215P mutation. Remarkably, the mutation significantly compromises cleavage of the anticoagulant protein C but has no effect on the hydrolysis of fibrinogen and PAR1. These findings demonstrate that thrombin may assume an inactive conformation in the absence of Na(+) and that its procoagulant and anticoagulant activities are closely linked to the mobility of residue 215.  相似文献   

10.
The thrombin mutant W215A/E217A (WE) is a potent anticoagulant both in vitro and in vivo. Previous x-ray structural studies have shown that WE assumes a partially collapsed conformation that is similar to the inactive E* form, which explains its drastically reduced activity toward substrate. Whether this collapsed conformation is genuine, rather than the result of crystal packing or the mutation introduced in the critical 215–217 β-strand, and whether binding of thrombomodulin to exosite I can allosterically shift the E* form to the active E form to restore activity toward protein C are issues of considerable mechanistic importance to improve the design of an anticoagulant thrombin mutant for therapeutic applications. Here we present four crystal structures of WE in the human and murine forms that confirm the collapsed conformation reported previously under different experimental conditions and crystal packing. We also present structures of human and murine WE bound to exosite I with a fragment of the platelet receptor PAR1, which is unable to shift WE to the E form. These structural findings, along with kinetic and calorimetry data, indicate that WE is strongly stabilized in the E* form and explain why binding of ligands to exosite I has only a modest effect on the E*-E equilibrium for this mutant. The E* → E transition requires the combined binding of thrombomodulin and protein C and restores activity of the mutant WE in the anticoagulant pathway.Thrombin is the pivotal protease of blood coagulation and is endowed with both procoagulant and anticoagulant roles in vivo (1). Thrombin acts as a procoagulant when it converts fibrinogen into an insoluble fibrin clot, activates clotting factors V, VIII, XI, and XIII, and cleaves PAR12 and PAR4 on the surface of human platelets thereby promoting platelet aggregation (2). Upon binding to thrombomodulin, a receptor present on the membrane of endothelial cells, thrombin becomes unable to interact with fibrinogen and PAR1 but increases >1,000-fold its activity toward the zymogen protein C (3). Activated protein C generated from the thrombin-thrombomodulin complex down-regulates both the amplification and progression of the coagulation cascade (3) and acts as a potent cytoprotective agent upon engagement of EPCR and PAR1 (4).The dual nature of thrombin has long motivated interest in dissociating its procoagulant and anticoagulant activities (512). Thrombin mutants with anticoagulant activity help rationalize the bleeding phenotypes of several naturally occurring mutations and could eventually provide new tools for pharmacological intervention (13) by exploiting the natural protein C pathway (3, 14, 15). Previous mutagenesis studies have led to the identification of the E217A and E217K mutations that significantly shift thrombin specificity from fibrinogen toward protein C relative to the wild type (1012). Both constructs were found to display anticoagulant activity in vivo (10, 12). The subsequent discovery of the role of Trp-215 in controlling the balance between pro- and anti-coagulant activities of thrombin (16) made it possible to construct the double mutant W215A/E217A (WE) featuring >19,000-fold reduced activity toward fibrinogen but only 7-fold loss of activity toward protein C (7). These properties make WE the most potent anticoagulant thrombin mutant engineered to date and a prototype for a new class of anticoagulants (13). In vivo studies have revealed an extraordinary potency, efficacy, and safety profile of WE when compared with direct administration of activated protein C or heparin (1719). Importantly, WE elicits cytoprotective effects (20) and acts as an antithrombotic by antagonizing the platelet receptor GpIb in its interaction with von Willebrand factor (21).What is the molecular mechanism underscoring the remarkable functional properties of WE? The mutant features very low activity toward synthetic and physiological substrates, including protein C. However, in the presence of thrombomodulin, protein C is activated efficiently (7). A possible explanation is that WE assumes an inactive conformation when free but is converted into an active form in the presence of thrombomodulin. The ability of WE to switch from inactive to active forms is consistent with recent kinetic (22) and structural (23, 24) evidence of the significant plasticity of the trypsin fold. The active form of the protease, E, coexists with an inactive form, E*, that is distinct from the zymogen conformation (25). Biological activity of the protease depends on the equilibrium distribution of E* and E, which is obviously different for different proteases depending on their physiological role and environmental conditions (25). The E* form features a collapse of the 215–217 β-strand into the active site and a flip of the peptide bond between residues Glu-192 and Gly-193, which disrupts the oxyanion hole. These changes have been documented crystallographically in thrombin and other trypsin-like proteases such as αI-tryptase (26), the high temperature requirement-like protease (27), complement factor D (28), granzyme K (29), hepatocyte growth factor activator (30), prostate kallikrein (31), prostasin (32, 33), complement factor B (34), and the arterivirus protease nsp4 (35). Hence, the questions that arise about the molecular mechanism of WE function are whether the mutant is indeed stabilized in the inactive E* form and whether it can be converted to the active E form upon thrombomodulin binding.Structural studies of the anticoagulant mutants E217K (36) and WE (37) show a partial collapse of the 215–217 β-strand into the active site that abrogates substrate binding. The collapse is similar to, but less pronounced than, that observed in the structure of the inactive E* form of thrombin where Trp-215 relinquishes its hydrophobic interaction with Phe-227 to engage the catalytic His-57 and residues of the 60-loop after a 10 Å shift in its position (24). These more substantial changes have been observed recently in the structure of the anticoagulant mutant Δ146–149e (38), which has proved that stabilization of E* is indeed a molecular mechanism capable of switching thrombin into an anticoagulant. It would be simple to assume that both E217K and WE, like Δ146–149e, are stabilized in the E* form. However, unlike Δ146–149e, both E217K and WE carry substitutions in the critical 215–217 β-strand that could result into additional functional effects overlapping with or mimicking a perturbation of the E*-E equilibrium. A significant concern is that both structures suffer from crystal packing interactions that may have biased the conformation of side chains and loops near the active site (24). The collapsed structures of E217K and WE may be artifactual unless validated by additional structural studies where crystal packing is substantially different.To address the second question, kinetic measurements of chromogenic substrate hydrolysis by WE in the presence of saturating amounts of thrombomodulin have been carried out (37), but these show only a modest improvement of the kcat/Km as opposed to >57,000-fold increase observed when protein C is used as a substrate (7, 37). The modest effect of thrombomodulin on the hydrolysis of chromogenic substrates is practically identical to that seen upon binding of hirugen to exosite I (37) and echoes the results obtained with the wild type (39) and other anticoagulant thrombin mutants (7, 9, 10, 12, 38). That argues against the ability of thrombomodulin alone to significantly shift the E*-E equilibrium in favor of the E form. Binding of a fragment of the platelet receptor PAR1 to exosite I in the D102N mutant stabilized in the E* form (24) does trigger the transition to the E form (23), but evidence that a similar long-range effect exists for the E217K or WE mutants has not been presented.In this study we have addressed the two unresolved questions about the mechanism of action of the anticoagulant thrombin mutant WE. Here we present new structures of the mutant in its human and murine versions, free and bound to a fragment of the thrombin receptor PAR1 at exosite I. The structures are complemented by direct energetic assessment of the binding of ligands to exosite I and its effect on the E*-E equilibrium.  相似文献   

11.
Thrombin helps to activate Factor XIII (FXIII) by hydrolyzing the R37-G38 peptide bond. The resultant transglutaminase introduces cross-links into the fibrin clot. With the development of therapeutic coagulation factors, there is a need to better understand interactions involving FXIII. Such knowledge will help predict ability to activate FXIII and thus ability to promote/hinder the generation of transglutaminase activity. Kinetic parameters have been determined for a series of thrombin species hydrolyzing the FXIII (28-41) V34X activation peptides (V34, V34L, V34F, and V34P). The V34P substitution introduces PAR4 character into the FXIII, and the V34F exhibits important similarities to the cardioprotective V34L. FXIII activation peptides containing V34, V34L, or V34P could each be accommodated by alanine mutants of thrombin lacking either the W60d or Y60a residue in the 60-insertion loop. By contrast, FXIII V34F AP could be cleaved by thrombin W60dA but not by Y60aA. FXIII V34P is highly reliant on the thrombin W215 platform for its strong substrate properties whereas FXIII V34F AP becomes the first segment that can maintain its K(m) upon loss of the critical thrombin W215 residue. Interestingly, FXIII V34F AP could also be readily accommodated by thrombin L99A and E217A. Hydrolysis of FXIII V34F AP by thrombin W217A/E217A (WE) was similar to that of FXIII V34L AP whereas WE could not effectively cleave FXIII V34P AP. FXIII V34F and V34P AP show promise for designing FXIII activation systems that are either tolerant of or greatly hindered by the presence of anticoagulant thrombins.  相似文献   

12.
Na(+) binding near the primary specificity pocket of thrombin promotes the procoagulant, prothrombotic, and signaling functions of the enzyme. The effect is mediated allosterically by a communication between the Na(+) site and regions involved in substrate recognition. Using a panel of 78 Ala mutants of thrombin, we have mapped the allosteric core of residues that are energetically linked to Na(+) binding. These residues are Asp-189, Glu-217, Asp-222, and Tyr-225, all in close proximity to the bound Na(+). Among these residues, Asp-189 shares with Asp-221 the important function of transducing Na(+) binding into enhanced catalytic activity. None of the residues of exosite I, exosite II, or the 60-loop plays a significant role in Na(+) binding and allosteric transduction. X-ray crystal structures of the Na(+)-free (slow) and Na(+)-bound (fast) forms of thrombin, free or bound to the active site inhibitor H-d-Phe-Pro-Arg-chloromethyl-ketone, document the conformational changes induced by Na(+) binding. The slow --> fast transition results in formation of the Arg-187:Asp-222 ion pair, optimal orientation of Asp-189 and Ser-195 for substrate binding, and a significant shift of the side chain of Glu-192 linked to a rearrangement of the network of water molecules that connect the bound Na(+) to Ser-195 in the active site. The changes in the water network and the allosteric core explain the thermodynamic signatures linked to Na(+) binding and the mechanism of thrombin activation by Na(+). The role of the water network uncovered in this study establishes a new paradigm for the allosteric regulation of thrombin and other Na(+)-activated enzymes involved in blood coagulation and the immune response.  相似文献   

13.
A process of thrombin interaction with synthetic and natural substrates in the presence of Na+ ions has been analyzed in the survey. Molecular bases of this interaction have been presented, interrelation between the structure and function of thrombin has been noted; the nature of the unique site of its active centre which determines high thrombin affinity for the substrates and increase of its catalytic activity defined by the term of "specificity to univalent cations" have been considered in detail. Na+ ions play the role of allosteric effector in realization of two informational states of thrombin which penform, respectively, two fundamental and competing functions in the process of hemostasis. The molecular basis of the process of Na+ binding with thrombin is rather simple and depends only on the single site which importance for the enzyme function is marked by numerous investigations of a number of authors, and it is shown that Na(+)-binding site is distributed in the other zone of thrombin molecule as compared to exosites I and II, which do not take part in Na(+)-binding and allosteric transduction. Considerable attention was given to conformational conversions of a thrombin molecule caused by Na+ ions binding. It was shown that the transition slow <--> fast of the enzyme forms leads to formation of the ion pair Arg-187: Asp-222, optimal orientation of Asp-189 and Ser-195 for binding of substrates and considerable shift of the lateral chain Glu-192 determined by the disturbance of the lattice of water molecules which connects Na(+)-binding site with aminoacid Ser-195 of the active centre of the enzyme. New data have been presented which indicate that the changes in the lattice of water molecules and allosteric nucleus of Na(+)-binding site of the enzyme are the basic link of raising the affinity between the thrombin and substrate and mechanism of the enzyme activation by Na(+)-ions. The survey touches some problems of creation of allosteric inhibitors of thrombin which can take essential effect on Na(+)-binding site and favor stabilization of the anticoagulant slow-form of thrombin, and of enzyme rational mutants with selective specificity in respect of protein C which display effective and safe anticoagulant and antithrombotic effects in vivo.  相似文献   

14.
The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) plays a key role in discriminating between gaseous substrates CO(2) and O(2). Based on numerous x-ray crystal structures, loop 6 is either closed or open depending on the presence or absence, respectively, of substrate ligands. The carboxyl terminus folds over loop 6 in the closed conformation, prompting speculation that it may trigger or latch loop 6 closure. Because an x-ray crystal structure of tobacco Rubisco revealed that phosphate is located at a site in the open form that is occupied by the carboxyl group of Asp-473 in the closed form, it was proposed that Asp-473 may serve as the latch that holds the carboxyl terminus over loop 6. To assess the essentiality of Asp-473 in catalysis, we used directed mutagenesis and chloroplast transformation of the green alga Chlamydomonas reinhardtii to create D473A and D473E mutant enzymes. The D473A and D473E mutant strains can grow photoautotrophically, indicating that Asp-473 is not essential for catalysis. However, both substitutions caused 87% decreases in carboxylation catalytic efficiency (V(max)/K(m)) and approximately 16% decreases in CO(2)/O(2) specificity. If the carboxyl terminus is required for stabilizing loop 6 in the closed conformation, there must be additional residues at the carboxyl terminus/loop 6 interface that contribute to this mechanism. Considering that substitutions at residue 473 can influence CO(2)/O(2) specificity, further study of interactions between loop 6 and the carboxyl terminus may provide clues for engineering an improved Rubisco.  相似文献   

15.
Thrombin bound to thrombomodulin activates thrombin-activable fibrinolysis inhibitor (TAFI) and protein C much more efficiently than thrombin alone. Although thrombomodulin has been proposed to alter the thrombin active site, the recently determined structure of the thrombin-thrombomodulin complex does not support this proposal. In this study, the contribution of amino acids near the activation site of TAFI toward thrombomodulin dependence was determined, utilizing four variants of TAFI with specific substitutions in the P6-P'3 region surrounding the Arg-92 cleavage site. Two point mutants had either the Ser-90 or Asp-87 of TAFI replaced with Ala, a third mutant had the thrombin activation site of the fibrinogen Bbeta-chain substituted into positions 91-95 of TAFI, and a fourth mutant had the thrombin activation site of protein C substituted into positions 90-95 of TAFI. Each of these mutants was expressed, purified, and characterized with respect to activation kinetics and functional properties of the enzyme. Even though fibrinogen is poorly cleaved by thrombin-thrombomodulin, the fibrinogen activation site does not significantly alter the thrombomodulin dependence of TAFI activation. The TAFI variant with the protein C activation sequence is only slowly activated by thrombin-thrombomodulin, and not at all by free thrombin. Mutating Asp-87 to Ala increases the catalytic efficiency of activation 3-fold both in the presence and absence of thrombomodulin, whereas mutating Ser-90 to Ala effects only minor kinetic differences compared with wild type TAFI. The thermal stabilities and antifibrinolytic properties of the enzymes were not substantially altered by any of the mutations that allowed for efficient activation of the enzyme. We conclude that residues in the P6-P'3 region of TAFI do not determine the thrombomodulin dependence of activation, which lends support to the argument that the role of thrombomodulin is to optimally orient thrombin and its substrate, rather than to allosterically alter the specificity of the thrombin active site.  相似文献   

16.
Yang L  Manithody C  Qureshi SH  Rezaie AR 《Biochemistry》2008,47(22):5976-5985
Structural and mutagenesis data have indicated that the 220-loop of thrombin is stabilized by a salt-bridge between Glu-217 and Lys-224, thereby facilitating the octahedral coordination of Na (+) with contributions from two carbonyl O atoms of Arg-221a and Lys-224. All three residues are also conserved in fXa and the X-ray crystal structure of fXa indicates that both Glu-217 and Lys-224 are within hydrogen-bonding distance from one another. To investigate the role of these three residues in the catalytic function of fXa and their contribution to interaction with Na (+), we substituted them with Ala and characterized their properties in both amidolytic and proteolytic activity assays. The results indicate that the affinity of all three mutants for interaction with Na (+) has been impaired. The mutant with the greatest loss of affinity for Na (+) (E217A or E217Q) also exhibited a dramatic impairment ( approximately 3-4 orders of magnitude) in its activity toward both synthetic and natural substrates. Interestingly, factor Va (fVa) restored most of the catalytic defect with prothrombin, but not with the synthetic substrate. Both Glu-217 mutants exhibited a near normal affinity for fVa in the prothrombinase assay, but a markedly lower affinity for the cofactor in a direct-binding assay. These results suggest that, similar to thrombin, an ionic interaction between Glu-217 and Lys-224 stabilizes the 220-loop of fXa for binding Na (+). They further support the hypothesis that the Na (+) and fVa-binding sites of fXa are energetically linked and that a cofactor function for fVa in the prothrombinase complex involves inducing a conformational change in the 220-loop of fXa that appears to stabilize this loop in the Na (+)-bound active conformation.  相似文献   

17.
Arosio D  Ayala YM  Di Cera E 《Biochemistry》2000,39(27):8095-8101
W215 is a highly conserved residue that shapes the S3 and S4 specificity sites of thrombin and participates in an edge-to-face interaction with residue F8 of the fibrinogen Aalpha chain. Protein C and the platelet receptor PAR-1 carry an acidic residue at P3 and bind to the active site of thrombin without making contact with W215. This suggested that mutation of W215 could dissociate the cleavage of fibrinogen from that of protein C and PAR-1. Replacement of W215 with Phe produces modest effects on thrombin function, whereas the W215Y replacement compromises significantly the catalytic activity toward all chromogenic and natural substrates that are tested. Replacement of W215 with Ala almost obliterates Na(+) binding, reduces the level of fibrinogen cleavage 500-fold, but decreases the levels of protein C activation and PAR-1 cleavage only 3- and 25-fold, respectively. The W215A mutant cleaves PAR-1 with a specificity constant that is more than 13-fold higher than that of fibrinogen and protein C and is the first thrombin derivative to be described that functions as an almost exclusive activator of PAR-1. The environment of W215 influences differentially three physiologically important interactions of thrombin, which should assist in the study of each of these functions separately in vivo.  相似文献   

18.
The thrombin mutant D221A/D222K (ARK) does not bind Na+ and has interesting functional properties intermediate between those of the slow and fast forms of wild type. We solved the X-ray crystal structure of ARK bound at exosite I with a fragment of hirudin at 2.4-A resolution. The structure shows a slight collapse of the 186 and 220 loops into the Na+ binding site due to disruption of the Asp222:Arg187 ion-pair. The backbone O atoms of Arg221a and Lys224 are shifted into conformations that eliminate optimal interaction with Na+. A paucity of solvent molecules in the Na+ binding site is also noted, by analogy to what is seen in the structure of the slow form. These findings reinforce the crucial role of the Asp222:Arg187 ion-pair in stabilizing the fast form of thrombin.  相似文献   

19.
Two homologous Delta5-3-ketosteroid isomerases from Comamonas testosteroni (TI-WT) and Pseudomonas putida biotype B (PI-WT) exhibit different pH activity profiles. TI-WT loses activity below pH 5.0 due to the protonation of the conserved catalytic base, Asp-38, while PI-WT does not. Based on the structural analysis of PI-WT, the critical catalytic base, Asp-38, was found to form a hydrogen bond with the indole ring NH of Trp-116, which is homologously replaced with Phe-116 in TI-WT. To investigate the role of Trp-116, we prepared the F116W mutant of TI-WT (TI-F116W) and the W116F mutant of PI-WT (PI-W116F) and compared kinetic parameters of those mutants at different pH levels. PI-W116F exhibited significantly decreased catalytic activity at acidic pH like TI-WT, whereas TI-F116W maintained catalytic activity at acidic pH like PI-WT and increased the kcat/Km value by 2.5- to 4.7-fold compared with TI-WT at pH 3.8. The crystal structure of TI-F116W clearly showed that the indole ring NH of Trp-116 could form a hydrogen bond with the carboxyl oxygen of Asp-38 like that of PI-WT. The present results demonstrate that the activities of both PI-WT and TI-F116W at low pH were maintained by a tryptophan, which was able not only to lower the pKa value of the catalytic base but also to increase the substrate affinity. This is one example of the strategy nature can adopt to evolve the diversity of the catalytic function in the enzymes. Our results provide insight into deciphering the molecular evolution of the enzyme and creating novel enzymes by protein engineering.  相似文献   

20.
The maize (Zea mays) beta-glucosidase Zm-p60.1 has been implicated in regulation of plant development by the targeted release of free cytokinins from cytokinin-O-glucosides, their inactive storage forms. The crystal structure of the wild-type enzyme was solved at 2.05-A resolution, allowing molecular docking analysis to be conducted. This indicated that the enzyme specificity toward substrates with aryl aglycones is determined by aglycone aromatic system stacking with W373, and interactions with edges of F193, F200, and F461 located opposite W373 in a slot-like aglycone-binding site. These aglycone-active site interactions recently were hypothesized to determine substrate specificity in inactive enzyme substrate complexes of ZM-Glu1, an allozyme of Zm-p60.1. Here, we test this hypothesis by kinetic analysis of F193I/Y/W mutants. The decreased K(m) of all mutants confirmed the involvement of F193 in determining enzyme affinity toward substrates with an aromatic aglycone. It was unexpected that a 30-fold decrease in k(cat) was found in F193I mutant compared with the wild type. Kinetic analysis and computer modeling demonstrated that the F193-aglycone-W373 interaction not only contributes to aglycone recognition as hypothesized previously but also codetermines catalytic rate by fixing the glucosidic bond in an orientation favorable for attack by the catalytic pair, E186 and E401. The catalytic pair, assigned initially by their location in the structure, was confirmed by kinetic analysis of E186D/Q and E401D/Q mutants. It was unexpected that the E401D as well as C205S and C211S mutations dramatically impaired the assembly of a catalysis-competent homodimer, suggesting novel links between the active site structure and dimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号