首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用盆栽实验研究了水分胁迫条件下AM真菌对柠条锦鸡儿(Caragana korshinskii)生长和抗旱性的影响.在土壤相对含水量为80%、60%和40%条件下,分别接种摩西球囊霉(Glomus mosseae)和柠条锦鸡儿根际土著菌,结果表明,水分胁迫对AM真菌的接种效果有显著影响.不同水分条件下,接种AM真菌显著提高了宿主植物根系菌根侵染率.土壤相对含水量为40%~60%时,接种株的株高、茎粗、生物干重和叶片保水力明显高于不接种株;接种AM真菌提高了植株对土壤有效N和有效P的利用率,增加了植株全P、叶片叶绿素和可溶性糖含量以及SOD、POD、CAT等保护酶活性.土壤相对含水量为40%时,叶片MDA含量明显下降.水分胁迫条件下,以接种柠条锦鸡儿根际土著菌的效果最佳.AM真菌增强宿主植物的抗旱性可能源于促进宿主植物根系对土壤水分和矿质元素吸收的直接作用和改善植物体内生理代谢活动、提高保护酶活性的间接作用.  相似文献   

2.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

3.
水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响   总被引:10,自引:0,他引:10  
贺学礼  高露  赵丽莉 《生态学报》2011,31(4):1029-1037
采用盆栽试验,研究了水分胁迫下接种丛枝菌根AM真菌对民勤绢蒿(Seriphidium minchünense)生长和抗旱性的影响。结果表明,不同水分条件下,接种AM真菌提高了民勤绢蒿菌根侵染率和生物量,增加了地上部和地下部全P含量,重度胁迫下接种株地上部总黄酮含量显著升高,而对分枝数和地上部、地下部全N含量无显著影响。水分胁迫提高了民勤绢蒿菌根依赖性和全N、全P菌根贡献率。不同生长时期接种AM真菌均能提高植株叶片相对含水量、可溶性蛋白和叶绿素含量;前期接种株叶片可溶性糖含量显著低于未接种株,而中后期可溶性糖含量显著高于未接种株;整个生长时期接种株比未接种株叶片维持较低的脯氨酸含量;不同生长时期接种株叶片全N和全P含量显著升高,重度胁迫下接种株叶片总黄酮含量显著升高。AM真菌促进宿主植物生长和增强抗旱性可能是AM真菌直接促进宿主植物根系对土壤水分和矿质元素吸收和间接改善植株体内生理代谢活动的缘故。  相似文献   

4.
NaCl胁迫下棉花体内 Na~+ 、K~+分布与耐盐性   总被引:9,自引:2,他引:7  
采用盐化土壤方法 ,选择苗期耐盐性较强的陆地棉品种枝棉 3号和中棉所 1 9及耐盐性较弱的品种泗棉 2号和苏棉 1 2号 ,研究了盐胁迫下棉苗体内 Na+、K+的运输和分配与耐盐性的关系。结果表明 ,耐盐品种根系具有一定的截留 Na+作用。棉花地上部盐分器官水平上的区域化分布特征明显 :2 0 0 mmol/L Na Cl胁迫下 ,枝棉 3号叶片中的 Na+含量显著低于泗棉 2号 ,茎及叶柄中的 Na+含量显著高于泗棉 2号 ;棉株地上部茎、叶柄、叶片中的 Na+含量分别由下而上逐渐减小 ,相同节位的茎、叶柄中的 Na+含量大于叶片 ,枝棉 3号更显著。1 0 0 mmol/L和 1 50 mmol/L Na Cl胁迫下 ,枝棉 3号和中棉所 1 9K+/Na+显著高于泗棉 2号和苏棉 1 2号。Na+在茎和叶柄中滞留和积累 ,根中的 K+向地上部选择性运输 ,以维持叶片中较高的 K+/Na+,是棉花耐盐性的一个重要特点  相似文献   

5.
土壤盐渍化是世界性的生态环境问题之一。关于丛枝菌根真菌(AM真菌)对盐胁迫下白芨生长和养分吸收的影响研究相对较少。以白芨幼苗为研究对象,设置盐处理(0 mM和200 mM)和AM真菌处理(不接种AM真菌和接种摩西球囊霉)各两个水平共计4个处理组合,探讨盐胁迫下AM真菌对白芨幼苗生长和养分吸收的影响。结果表明,盐胁迫显著降低白芨根系侵染率、总干重和地上部分P含量分别约56.1%、48.9%和10%;在对照盐浓度下,接种AM真菌显著提高了白芨根系侵染率、总干重、地上部分N含量及地上部分P含量分别约14%、56.1%、10.8%和8.2%而在高盐浓度下,接种AM真菌则显著提高白芨根系侵染率、总干重、地上部分N含量及地下部分P含量分别约42.7%、30.7%、12.1%和11%,说明接种AM真菌可降低盐胁迫对白芨的生长和养分吸收的抑制作用。以上结果表明,接种AM真菌有助于提高白芨的耐盐能力,这对应用菌根技术提高白芨在盐化生境的种植和管理具有理论和实践指导意义。  相似文献   

6.
以棉花品种‘大铃棉69号’为材料,通过室内盆栽试验,将两种丛枝菌根真菌根——内根孢囊霉(Rhizophagus intraradices,RI)和摩西斗管囊霉(Funneliformis mosseae,FM)分别接种棉花根部,分析不同土壤砷浓度(0、100、200 mg/kg)条件下丛枝菌根真菌对棉花生长、根系特征、细胞膜透性、抗氧化酶活性以及砷在棉花体内积累和转移的影响,为丛枝菌根真菌在土壤砷污染修复中的合理应用提供理论支撑。结果表明:(1)随着砷胁迫的加重,棉花生长、根系发育、根系活力、抗氧化酶系统(SOD、POD、CAT)和渗透调节系统(可溶性糖、可溶性蛋白、脯氨酸)均受到明显抑制。(2)接种RI和FM显著提高了棉花的株高、生物量、根冠比,根系活力;降低了棉花地上和地下部的砷含量和砷转移系数;提高了棉花总根长、根表面积、根体积、根尖数、根叉数等根系形态指标,并降低其0~0.2 mm径级的根长百分比,增加其0.5~1.0 mm和1.0 mm径级的根长百分比;促使棉花叶和根中可溶性糖、可溶性蛋白、脯氨酸等渗透调节物质含量和SOD、POD、CAT等抗氧化酶活性不同程度升高,并使相对电导率、MDA含量降低;其中,摩西斗管囊霉接种效果优于根内根孢囊霉。研究发现,在土壤砷胁迫条件下,接种丛枝菌根真菌可促进棉花生长和根系发育,降低棉花体内砷浓度并抑制其向地上转移,同时激活抗氧化系统和渗透调节系统来减轻砷对棉花的毒害作用,增强棉花对土壤砷胁迫的耐受能力,且摩西斗管囊霉接种效果更佳。  相似文献   

7.
丛枝菌根真菌对柑橘嫁接苗枳/红肉脐橙抗旱性的影响   总被引:3,自引:1,他引:2  
采用盆栽试验,研究了自然水分胁迫和胁迫解除复水条件下接种AM真菌摩西球囊霉对柑橘嫁接苗枳/红肉脐橙生长和保护系统能力的影响.结果表明,接种AM真菌的柑橘嫁接苗的株高、穗粗、叶面积和新梢生长量显著或极显著地高于未接种植株.在胁迫解除复水第4天,接种AM真菌的根系可溶性蛋白质含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性显著或极显著高于未接种植株.在自然水分胁迫和胁迫解除复水过程中,接种AM真菌较未接种处理降低叶片丙二醛(MDA)含量,提高可溶性糖和可溶性蛋白质含量,增强SOD、过氧化物酶(POD)、CAT活性,从而增强柑橘嫁接苗的渗透调节和保护防御能力,提高柑橘嫁接苗的抗旱能力.水分和菌根显著交互影响叶片SOD活性.AM真菌提高寄主植物的抗旱性机制可能与寄主植物的保护系统能力的改变有关.  相似文献   

8.
以采自菏泽牡丹园的牡丹‘凤丹’为材料,采用盆栽方法研究了不同浓度人工海水(0%、8%、16%和24%)胁迫下,接种丛枝菌根(arbuscular mycorrhizal,AM)真菌Glomus mosseae对牡丹渗透调节物质含量的影响,以不接种为对照。结果表明,盐胁迫下接种AM真菌能提高牡丹叶片可溶性糖和可溶性蛋白的含量,增大K+/Na+比值,减少叶片脯氨酸含量。结论认为,AM真菌能改善牡丹叶片的渗透调节,增强牡丹耐盐能力,促进了盐胁迫下牡丹幼苗的生长。  相似文献   

9.
在盐胁迫下,采用盆栽方法研究AM真菌对红花植株耐盐生理指标的影响,以不接种为对照。结果表明,在0、0.1%和0.2%浓度NaCl胁迫下,AM真菌促进红花幼苗的生长,接种真菌的红花叶片SOD和CAT活性、脯氨酸和可溶性蛋白的含量都高于不接种处理的,叶片细胞质膜透性和MDA含量则低于不接种处理的,结果证明AM真菌可以提高植物的耐盐性。  相似文献   

10.
丛枝菌根真菌对紫薇耐盐性的影响   总被引:1,自引:0,他引:1  
于盆栽条件下对紫薇(Lagerstroemia indica)接种Funneliformis mosseae,并施加不同浓度盐(0、0.15%、0.30%和0.45%NaCl)处理后,测定菌根侵染率、菌根依赖性、生长指标、根系参数、生理指标和耐盐系数。结果表明,接种F.mosseae显著提高盐胁迫下紫薇的株高、鲜重、干重、根长、根尖数、平均直径以及总长度,进而增大了紫薇根系的总表面积与总体积,促进了紫薇根系的生长;增加了叶片N、P、K和叶片叶绿素含量,其中0.15%NaCl胁迫下,接种处理紫薇叶片N含量比对照提高最大,为对照的1.5倍。0.45%NaCl胁迫下,接种处理后紫薇叶片P、K和叶绿素含量比对照提高最大,分别为对照的1.5、1.3和2.4倍;接种能显著降低盐胁迫下紫薇叶片Na+和Cl-含量,其中0.15%NaCl胁迫下,接种处理的Na+和Cl-含量比未接种降低幅度最大,分别为对照的59%和74%;降低盐胁迫下紫薇叶片丙二醛含量和膜透性,其中0.30%NaCl胁迫下,接种处理紫薇叶片的丙二醛含量和膜透性分别比未接种的降低33%和12%;接种F.mosseae后紫薇叶片脯氨酸含量显著降低,可溶性糖含量显著提高,且随盐浓度的增大,呈逐渐下降趋势;接种F.mosseae的紫薇耐盐系数比未接种处理提高27%。这些结果表明接种F.mosseae提高了紫薇的耐盐性。  相似文献   

11.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

12.
Two arbuscular mycorrhizal (AM) fungi Glomus macrocarpum and Glomus fasciculatum significantly improved growth and essential oil concentration of Foeniculum vulgare Mill. However, AM inoculation of plants along with phosphorus fertilization significantly enhanced growth, P-uptake and essential oil content of plants compared to either of the components applied separately. Among the two fungal inoculants, G. fasciculatum registered the highest growth at both levels of phosphorus used with up to 78% increase in essential oil concentration of fennel seeds over non-mycorrhizal control. The essential oil characterization by gas liquid chromatography revealed that the level of anethol was significantly enhanced on mycorrhization.  相似文献   

13.
 The response of peanut to salt (NaCl) and acid (HCl) stress was studied in association with Glomus caledonium, an arbuscular mycorrhizal (AM) fungus. The plants were exposed to salt stress by irrigation on alternate days with 1% or 5% NaCl solutions, or with 0.1 N HCl to induce acid stress. Plant yield almost tripled in mycorrhizal plants compared with nonmycorrhizal control plants. AM inoculation significantly increased plant yield and biomass at 1% NaCl, while at 5% NaCl AM was less effective in alleviating salt stress. Percentage AM colonization was also lowest at 5% NaCl. AM inoculation was found to promote the establishment of peanut plants under acid stress conditions. Accepted: 2 October 1995  相似文献   

14.
接种丛枝菌根(AM)真菌对植物DBP污染的影响   总被引:13,自引:3,他引:10  
在温室进行盆栽试验,以DBP(邻苯二甲酸二丁酯)为研究对象,以豇豆(Pigna sinensis)为宿主植物,分别接种AM真菌Acaulospora lavis(光壁无梗球囊霉)和Glomus caledonium(苏格兰球囊霉),观察接种AM真菌对植物DBP污染变化的影响.结果表明,接种AM真菌明显控制了植物对DBP的吸收,降低了植物体内DBP的浓度.在低浓度DBP(4mg.kg^-1)土壤处理时,接种Acaulospora lavis和Glomus caledo-nium分别使植物体内DBP浓度比不接种(CK)最大下降32.7%和21.7%;高浓度DBP(100mg.kg^-1)土壤处理时,分别比CK最大下降30.5%和30.0%.接种AM真菌还抑制了DBP由植物根系向地上部的迁移,对减轻植物遭受DBP污染起了一定的作用.  相似文献   

15.
We studied the effect of inoculation with a mixture of three arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and addition of a composted organic residue on plant growth, nutrient uptake, mycorrhizal colonisation and superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidase (POX, EC 1.11.1.7) activities in shoots of Juniperus oxycedrus seedlings after well-watered, drought and recovery periods. The mycorrhizal inoculation and composted residue addition significantly increased the growth, foliar nutrients (N, P, K) and shoot water content of the plants, independent of the water regime. POX activity in control plants increased during drought (about 250% higher than under well-watered conditions) and returned to initial levels after re-watering. The seedlings inoculated with AM fungi showed the highest values of POX activity, followed by the plants grown in the amended soil, which varied little during the drought and recovery periods. Drought decreased the SOD activity in shoots of both J. oxycedrus seedlings inoculated with AM fungi and those grown with composted residue, but did not affect that of control plants. After re-watering, the SOD activity in mycorrhizal or residue-amended plants increased, showing values similar to control plants.  相似文献   

16.
The growth of licorice in arid areas faces nutritional and environmental stresses. Arbuscular mycorrhizal (AM) fungi have been shown to increase the abilities of plants to develop. However, little is known regarding the role of AM fungi in licorice (Glycyrrhiza uralensis) growth. In the present study, by inoculation with two AM fungi, Glomus mosseae (Nicolson & Gerdemann) Gerd. & Trappe and Glomus veriforme (P. Karst.), the effects on licorice growth in sand were examined by measuring plant height, number of leaves, shoot and root fresh weight, and by analyzing morphological parameters of the root system in sand. The influence of the two microorganisms on the accumulation of mineral nutritions and bioactive components in licorice were also investigated. The results showed that mycorrhyzae were of the Arum-type and their colonization frequency (F %), colonization intensity (M %) and colonization intensity (m %) of AM fungi inoculation were found to be 80.0–84.6%, 49.4–60.0% and 58.4–71.9%, respectively. The inoculation significantly improved plant growth during early and late growth stages in comparison with the control. Moreover, inoculation of G. mosseae and G. versiforme, alone or in combination, improved plant phosphorus acquisition in the leaf over non-inoculation plants. In addition, mycorrhiza formation enhanced the glycyrrhizin concentration in roots, but resulted in a considerable reduction of the root oxidase activity. The results indicate that the inoculation with AM fungi could be a useful approach to increase the licorice pharmic quality.  相似文献   

17.
We studied the influence of inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi, Glomus intraradices Schenck & Smith, Glomus deserticola Trappe, Bloss. & Menge and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of composted sewage sludge (SS) on the activities of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidase (POX) and of shoot and root nitrate reductase (NR, EC 1.6.6.1) in Juniperus oxycedrus L. seedlings, an evergreen shrub, grown in a non-sterile soil under well-watered and drought-stress conditions. Both the inoculation with exotic AM fungi and the addition of composted SS stimulated significantly growth and the N and P contents in shoot tissues of J. oxycedrus with respect to the plants neither inoculated nor treated with composted SS that were either well-watered or droughted. Under drought-stress conditions, only inoculation with exotic AM fungi increased shoot and root NR activity (about 188% and 38%, respectively, with respect to the plants neither inoculated nor treated with composted SS). Drought increased the POX and SOD activities in both shoots of J. oxycedrus seedlings inoculated with exotic AM fungi and grown with composted SS, but the increase was less than in the plants neither inoculated nor treated with SS. Both the plants inoculated with exotic AM fungi and the plants grown with composted SS developed additional mechanisms to avoid oxidative damage produced under water-shortage conditions.  相似文献   

18.
Two sets of experiments to determine the effect of mycorrhiza on soybean (Glycine max) growth under saline conditions and to investigate the salt acclimation of mycorrhizal fungi were conducted. In the first experiment, the effect of an arbuscular mycorrhizal (AM) fungus Glomus etunicatum on mineral nutrient, proline and carbohydrate concentrations and growth of soybean. Under different NaCl concentrations (0, 50, 100, 150 and 200mM) was evaluated. Salinity decreased AM colonization. In both the M and nonAM plants shoot and root proline and shoot Na and Zn concentrations were increased under salinity. Soybean plants inoculated with the AM fungus had significantly higher fresh and dry weight, root proline, P, K and Zn but lower shoot proline and Na concentrations compared to the non inoculated plants. In the second experiment, the AM fungus was pre-treated with NaCl (salt acclimation) then was used as inoculum for soybean plants subjected to 100mM NaCl. Root colonization, fresh and dry weight, root proline, P, K and Zn concentrations were greater in soybean plants inoculated with the salt pre-treated fungus, compared to those inoculated with the nonsalt pre-treated fungus. However, for Na, the situation was the opposite. Based on these results, the AM inoculation helps the growth of soybean plants grown in saline conditions. When the AM fungus was pre-treated with NaCl with a gradual increase of concentration, and then exposed to a sudden salt stress, their efficiency was increased. This may be due to the acclimation of the AM fungus to salinity.  相似文献   

19.
Producing nonmycorrhizal plants in the field is a challenge due to the ubiquitous distribution of arbuscular mycorrhizal [AM] fungi and impacts of chemical treatments upon nontarget organisms. A field plot was covered with ground cover fabric to prohibit plant growth and take advantage of the obligate symbiotic nature of AM fungi to selectively starve and remove them from the soil microbiological community. The decline in the AM fungus population was monitored through spore counts and most probable number bioassays. Response to inoculation experiments were conducted to contrast the response of Allium porrum L. to inoculation with in vitro produced spores of Glomus intraradices Schenck and Smith when plants were grown in the AM fungus-depleted soil vs. soil from an adjacent, cropped plot. Data indicated a strongly diminished, yet still viable population of AM fungi after 39 months of bare fallow. Plants grown in cropped soil showed no growth response nor increase in percentage root length colonized as a result of inoculation, while the response to inoculation of plants grown in the covered soil increased as the population of AM fungi declined below 1 propagule cm?3.  相似文献   

20.
The effects of bacterial inoculation (Bacillus sp.) on the development and physiology of the symbiosis between lettuce and the arbuscular mycorrhizal (AM) fungi Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe and Glomus intraradices (Schenck and Smith) were investigated. Plant growth, mineral nutrition and gas-exchange values in response to bacterial inoculation after PEG-induced drought stress were also evaluated. In AM plants, inoculation with Bacillus sp. enhanced fungal development and metabolism, measured as succinate dehydrogenase (SDH) and alkaline phosphatase (ALP) activities, more than plant growth. Under non-stressed conditions, G. intraradices colonization increased all plant physiological values to a higher extent when in dual inoculation with the bacterium. Under stress conditions, the bacterium had an important stimulatory effect on G. intraradices development. Under such conditions, the effects of the bacterium on photosynthetic rate, water use efficiency (WUE) and stomatal conductance of lettuce plants differed with the fungus species. Plant-gas exchange was enhanced in G. intraradices- and reduced in G. mosseae-colonized plants when co-inoculated with Bacillus sp. Thus, the effects of each fungus on plant physiology were modulated by the bacterium. Stress was detrimental, particularly in G. intraradices-colonized plants without the bacterium, reducing intra and extraradical mycelium growth and vitality (SDH), as well as plant-gas exchange. Nevertheless, Bacillus sp. inoculation improved all these plant and fungal parameters to the same level as in non-stressed plants. The highest amount of alive and active AM mycelium for both fungi was obtained after co-inoculation with Bacillus sp. These results suggest that selected free-living bacteria and AM fungi should be co-inoculated to optimize the formation and functioning of the AM symbiosis in both normal and adverse environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号