首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
【目的】为探讨好氧-厌氧混合污泥启动微生物燃料电池(Microbial fuel cell,MFC)产电性能以及MFC对微生物群落的选择作用,【方法】以乳酸为底物,应用不依赖于培养的微生物分子生物学技术解析单室MFC启动过程中微生物群落的组成和结构动态学特征。【结果】结果表明,MFC经过3个周期启动成功,最高输出电压230 m V。当MFC外电阻为1656Ω时,最大功率密度11.15 W/m3,电池运行稳定。混合污泥启动MFC以后,阳极生物膜微生物群落结构同种泥差异较大,且多样性降低。生物膜中微生物类群按丰度依次为β-变形菌纲(Betaproteobacteria)24.90%、拟杆菌门(Bacteroidetes)21.30%、厚壁菌门(Firmicutes)9.70%、γ-变形菌纲(Gammaproteobacteria)8.50%、δ-变形菌纲(Deltaproteobacteria)7.90%、绿弯菌门(Chloroflexi)4.20%以及α-变形菌纲(Alphaproteobacteria)3.60%。有利于生物膜形成与稳定的动胶菌属(Zoogloea)和不动杆菌属(Acinetobacter)序列丰度分别占生物膜群落的5.00%和3.90%,与MFC产电能力直接相关的地杆菌属(Geobacter)序列由混合污泥中的0.60%上升至阳极生物膜中的2.60%。【结论】本研究表明,MFC阳极生物膜在驯化过程中对污泥中的微生物进行淘汰和选择,最终驯化形成了有利于生物膜形成与稳定、有机物厌氧发酵与产电的微生物菌群。  相似文献   

2.
摘要:【目的】为探讨底物波动对微生物燃料电池(MFC)产电效能和阳极微生物群落的影响,【方法】依次以乳酸-丙酸-乳酸为底物,应用不依赖于培养的微生物分子生态学技术,解析单室MFC 启动及底物替换过程中阳极微生物群落的动态学响应特征。【结果】底物的更换过程降低了MFC的产电效能,当改变为新底物后,MFC需要较长的产电恢复期。同时,底物的转换改变了阳极微生物群落结构,Anaeromusa spp.、Pseudomonas spp.以及Thiobacillus thioparus对乳酸底物具有很好的响应,随着乳酸底物的投加而富集;丙酸底物对Dechloromonas spp.和Comamonas testosteroni等类群表现出较强的选择作用;而产电微生物Geobacter spp.由于利用乳酸、丙酸的共同代谢产物乙酸为底物而被逐渐富集,是多种底物替换过程的重叠种群。【结论】本研究表明,MFC的阳极微生物群落组成与投加的底物有较强的对应性,为了减缓底物波动对MFC产电过程的影响,应尽量采用混合有机底物,以提供宽泛的营养生态位,提高种群的功能重叠性。  相似文献   

3.
【目的】将厌氧的膜生物反应器(MBR)与微生物燃料电池(MFC)耦合的厌氧电辅助膜生物反应器(E-MBR)应用于实际工业焦化废水处理。【方法】通过正交实验优化了反应器进水的培养条件为PO_4~(3–)14.3 mg/L、Fe~(2+)0.2 mg/L、Fe~(3+)0.1 mg/L、Co~(2+)0.1 mg/L和Mn~(2+)0.2 mg/L。在此条件下考察了该反应器对系统中有机污染物的去除效率及厌氧污泥的污泥特性、产电性能、胞外聚合物(EPS)、微生物群落结构及膜污染的影响。【结果】结果表明,与未优化的培养条件相比,工业焦化废水COD的去除率提高了23%;污泥浓度(MLSS)、比重、沉降速度增加,污泥体积指数(SVI)降低,表明污泥颗粒化及沉降性能提高;污泥中溶解性EPS (SMP)、松散态EPS (LB-EPS)及紧密结合态EPS (TB-EPS)这3种组分中的蛋白质与多糖的比例(P/C)分别降低0.12、0.25和0.16,表明污泥更易于被降解;厌氧污泥的产电性能增强;高通量分子测序结果表明,反应器中污泥的群落结构发生了明显的变化,优势菌群突出;经扫描电镜(SEM)对比结果表明,反应器阴极膜的污染情况也得到了一定的减缓。【结论】优化进水培养条件可以达到使反应器污水处理效率提高、清理周期缩短和运行更稳定等效果,对于工业废水处理技术的节能环保方面提供一定的理论依据。  相似文献   

4.
微生物电解池阳极生物膜功能菌群构建及群落特征分析   总被引:2,自引:0,他引:2  
【目的】微生物电解电池(MEC)是近几年快速发展的利用电极呼吸微生物快速降解有机质,通过较小的辅助外加电压直接生成氢气的新工艺。MEC能够有效地富集高效率电子传递功能菌群,是未来工艺放大和快速启动的关键。【方法】采用不同驯化方法构建MEC电极微生物菌群,通过单链构象多肽性技术(Single-strand conformation poly-morphism,SSCP)快速检测分析启动后电子传递功能菌群特征。【结果】阳极生物膜接种MEC可以实现2 d的快速启动,库仑效率达到20%以上,7 d获得稳定产氢,氢气转化率达到30%,能量回收效率达到90%以上。通过SSCP群落分析发现,采用微生物燃料电池阳极生物膜构建的MEC主要电子传递功能相关的菌群包括Pseudomonas sp.、Flavobacterium sp.、Ochrobactrum sp.,而直接由产氢MEC阳极生物膜新启动的MEC功能菌群组成丰度更大,包括电子传递效能更高的Desulfovibrio、Pseudomonas和Shewanella成为主要优势电子传递菌群。通过稳定产氢运行,MEC阳极生物膜优势菌群中存在的较大比例的厌氧菌与电子传递辅助菌对体系的快速稳定运行十分重要。【结论】与MFC阳极生物膜相比,MEC生物膜作为启动菌源能够获得多样性更丰富的电极功能菌群,其库仑效率和产氢效率更具优势。  相似文献   

5.
大连长山群岛海岸带沉积物微生物群落结构特征   总被引:2,自引:0,他引:2       下载免费PDF全文
【目的】为揭示海岸带微生物群落结构在人类活动影响下的分布差异及对环境因子变化的响应趋势,【方法】本实验采用t-RFLP和DGGE技术,对大连长山群岛不同功能类型海岸潮间带沉积物中的微生物群落结构特征进行比对和分析,并通过16S rRNA基因文库解析养殖污染站位的微生物群落结构特征。【结果】T-RFLP的t-RF分析显示,养殖污染严重站位的微生物丰度、香农指数和均匀度明显高于其它站位。通过对t-RFLP色谱峰和DGGE图谱聚类分析发现,处于旅游区的2个站位微生物群落结构相似度较高,养殖区随污染程度加重与旅游区的群落结构差异增大。对污染严重站位建立的克隆文库显示变形菌门(Proteobacteria)为优势菌群,其中γ-变形菌门是主要存在的亚门微生物。【结论】T-RFLP和DGGE技术从不同方面反映了环境中的微生物群落结构特征,研究结果表明养殖污染区的微生物群落结构发生明显变化,其影响大于地理隔离效应,污染严重区域的微生物群落中存在大量肠杆菌属,且多个物种与富营养化和赤潮相关联,如拟杆菌门和α-变形细菌红细菌目的细菌。  相似文献   

6.
赵欣  吴忆宁  王岭  李伟明  靳敏  李帅 《微生物学报》2016,56(11):1794-1801
【目的】为探究UASB颗粒污泥启动的单室微生物电解池(Single-chamber microbial electrolysis cell,SMEC)对Ni(II)的去除途径和SMEC中微生物群落的动态特征。【方法】以乙酸钠为底物,采用单因子控制方法分析SMEC对Ni(II)的去除途径和应用Illumina高通量测序技术解析SMEC启动过程中微生物群落的组成和结构动态学特征。【结果】结果表明,SMEC对重金属的去除主要通过吸附和微生物作用。经培养驯化功能菌群发生变化。成熟单室微生物燃料电池(Single-chamber microbial fuel cell,SMFC)阳极生物膜菌群主要是Proteobacteria(变形菌门,91.42%)中的Geobacter sp.(地杆菌属,76.25%);阴极生物膜菌群主要是Bacteroidetes(拟杆菌门,47.99%)中的Niabella sp.(布鲁氏菌属,33.01%)和Proteobacteria(45.74%)中的Ochrobactrum sp.(苍白杆菌属,10.80%)。成熟SMFC改装成的SMEC在12.5 mg-Ni(II)/L下,阳极生物膜菌群由单一优势菌Geobacter sp.转变为Geobacter sp.(41.56%)和Proteobacteria中的Azospirillum sp.(固氮螺菌属,5.97%);阴极生物膜菌群由Niabella sp.和Ochrobactrum sp.转变为Firmicutes(厚壁菌门,25.21%)中的Acetoanaerobium sp.(19.28%)、Proteobacteria(51.42%)中的Dokdonella sp.(16.48%)和Azospirillum sp.(9.49%)。【结论】本研究表明,污泥微生物经SMFC和SMEC驯化过程及Ni(II)的淘汰和选择,在电极上形成了稳定、高效产电与除镍菌群,优势菌群为Proteobacteria。  相似文献   

7.
【背景】生物阴极微生物燃料电池因其构造成本低和阴极可持续性发展的优点而成为一种很有前途的废水处理系统,但阴极微生物的氧化还原性能限制了其在实际应用中的推广。【目的】为了提高生物阴极的性能,需要深入了解影响阴极氧化还原性能的微生物群落。【方法】利用16S rRNA基因高通量测序技术分析对比原始接种污泥样品和驯化后阴极电极上生物膜样品多样性及结构变化。【结果】测序结果表明,原始接种污泥样品与驯化后阴极电极生物膜样品中微生物群落种类和结构存在显著差异,驯化后阴极电极生物膜样品中变形菌门(Proteobacteria)、γ-变形菌纲(Gammaproteobacteria)和特吕珀菌属(Trueperaceae)相对丰度比例高于原始污泥样品,成为优势菌群。【结论】驯化对系统阴极电极生物膜群落影响显著,随着产电量的输出,优势菌群不断富集,最终形成一个适应该实验环境下的新的微生物群落。对优势菌群结构和变化进行探讨,为生物阴极的研究补充更多生物学方面的理论基础。  相似文献   

8.
中高温污泥厌氧消化系统中微生物群落比较   总被引:9,自引:0,他引:9  
【目的】结合中温与高温消化两者优势的两相厌氧消化工艺可能是推进污泥厌氧消化发展的重要方向,因此,探究和比较中温和高温污泥厌氧消化系统中微生物群落组成的异同具有重要意义。【方法】利用高通量测序技术检测中温和高温厌氧消化系统中细菌与古菌的16S r RNA基因序列信息和真菌的内转录间隔(ITS)序列信息,利用基因芯片(Geo Chip 5.0)检测病毒和病原菌致病基因的信息,以对比中温和高温条件下微生物群落在物种组成和功能基因层面上的异同。【结果】中温和高温条件下细菌和古菌在群落物种组成上存在显著差异,病毒和病原菌毒性基因也显著不同,而两种系统中真菌群落的物种组成相似且丰度相对较低。中温条件下产甲烷古菌和未分类微生物相对丰度较高,而高温条件下产酸及嗜热菌相对丰度较高,且高温消化后病毒和病原菌毒性基因相对丰度下降。微生物群落结构与COD、TS和VS有着显著相关性。【结论】微生物群落组成和功能基因在中高温的污泥厌氧消化系统中显著不同,从而解释了两个系统功能的差异。微生物群落的形成与进水参数相关,说明微生物对进水条件敏感。  相似文献   

9.
【背景】微生物燃料电池(Microbial Fuel Cell,MFC)作为一种新型的燃料电池资源,在产电的同时可应用于污水处理领域,达到资源最大化的目的。【目的】从MFC中分离获得一株可培养微生物,研究其产电特性及在污水处理中的微生物絮凝、重金属耐受、苯酚降解性能,为扩展产电菌资源库提供理论基础。【方法】利用WO_3纳米探针从MFC阳极中筛选获得一株具备产电和絮凝性能的菌株,命名为EFS1。运用循环伏安分析结合扫描电镜观测阳极电极;改变外电阻测定极化曲线和功率密度曲线。测定菌株的絮凝、重金属耐受及苯酚降解性能。【结果】经16S rRNA基因序列分析,结合形态学和生理生化鉴定菌株EFS1为微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)。菌株EFS1具有稳定的产电周期,周期电压最高可达300m V,功率密度可达56.25m W/m~2;扫描电镜发现菌株存在直接接触电极及分泌电子中介体传递电子的方式;MFC内阻为1 000Ω左右。有氧条件下菌株的絮凝率可达到70%,存在电子受体的无氧环境中可达到80%;该菌株还具有良好的Cd~(2+)、Cu~(2+)、Mn~(2+)耐受性及苯酚降解性能,在48 h、2–4 mg/L时苯酚降解率达到了100%。【结论】研究验证了产电菌EFS1具备絮凝能力、重金属耐受、苯酚降解的可能性,为产电菌的开发及污水处理方面提供理论依据。  相似文献   

10.
基于PCR-DGGE技术的红树林区微生物群落结构   总被引:4,自引:0,他引:4       下载免费PDF全文
【目的】为了解红树林沉积物中细菌的群落结构特征。【方法】应用PCR-DGGE技术对福建浮宫红树林的16个采样站位样品细菌的群落结构进行了研究。根据DGGE指纹图谱,对它们的遗传多样性进行了分析。【结果】各站位样品细菌多样性指数(H)、丰度(S)和均匀度(EH)均有所不同,这些差异与它们所处站位的不同有关,红树林区细菌多样性高于非红树林区细菌多样性。对不同站位细菌群落相似性分析,它们的相似性系数也存在一定的规律,同一断面的细菌群落结构相近性较高。对DGGE的优势条带序列分析,同源性最高的微生物分别属于变形菌门(Proteobacteria)、酸菌门(Acidobacteria)和绿菌门(Chlorobi),它们均为未培养微生物,分别来自于河口海岸沉积物。【结论】应用PCR-DGGE技术更能客观地反映红树林沉积物中真实的细菌群落结构信息。另外,研究也表明红树林区微生物多样性丰富,在红树林区研究开发未知微生物资源具有巨大的潜力。  相似文献   

11.
Power densities produced by microbial fuel cells (MFCs) in natural systems are changed by exposure to light through the enrichment of photosynthetic microorganisms. When MFCs with brush anodes were exposed to light (4000 lx), power densities increased by 8–10% for glucose-fed reactors, and 34% for acetate-fed reactors. Denaturing gradient gel electrophoresis (DGGE) profiles based on the 16S rRNA gene showed that exposure to high light levels changed the microbial communities on the anodes. Based on 16S rRNA gene clone libraries of light-exposed systems the anode communities using glucose were also significantly different than those fed acetate. Dominant bacteria that are known exoelectrogens were identified in the anode biofilm, including a purple nonsulfur (PNS) photosynthetic bacterium, Rhodopseudomonas palustris, and a dissimilatory iron-reducing bacterium, Geobacter sulfurreducens. Pure culture tests confirmed that PNS photosynthetic bacteria increased power production when exposed to high light intensities (4000 lx). These results demonstrate that power production and community composition are affected by light conditions as well as electron donors in single-chamber air-cathode MFCs.  相似文献   

12.
Microbial fuel cells (MFCs) harness the electrochemical activity of certain microbes for the production of electricity from reduced compounds. Characterizations of MFC anode biofilms have collectively shown very diverse microbial communities, raising ecological questions about competition and community succession within these anode-reducing communities. Three sets of triplicate, two-chamber MFCs inoculated with anaerobic sludge and differing in energy sources (acetate, lactate, and glucose) were operated to explore these questions. Based on 16S rDNA-targeted denaturing gradient gel electrophoresis (DGGE), all anode communities contained sequences closely affiliated with Geobacter sulfurreducens (>99% similarity) and an uncultured bacterium clone in the Bacteroidetes class (99% similarity). Various other Geobacter-like sequences were also enriched in most of the anode biofilms. While the anode communities in replicate reactors for each substrate generally converged to a reproducible community, there were some variations in the relative distribution of these putative anode-reducing Geobacter-like strains. Firmicutes were found only in glucose-fed MFCs, presumably serving the roles of converting complex carbon into simple molecules and scavenging oxygen. The maximum current density in these systems was negatively correlated with internal resistance variations among replicate reactors and, likely, was only minimally affected by anode community differences in these two-chamber MFCs with high internal resistance.  相似文献   

13.
In microbial fuel cells (MFCs) bacteria generate electricity by mediating the oxidation of organic compounds and transferring the resulting electrons to an anode electrode. The objective of this study was to test the possibility of generating electricity with rumen microorganisms as biocatalysts and cellulose as the electron donor in two-compartment MFCs. The anode and cathode chambers were separated by a proton exchange membrane and graphite plates were used as electrodes. The medium in the anode chamber was inoculated with rumen microorganisms, and the catholyte in the cathode compartment was ferricyanide solution. Maximum power density reached 55 mW/m(2) (1.5 mA, 313 mV) with cellulose as the electron donor. Cellulose hydrolysis and electrode reduction were shown to support the production of current. The electrical current was sustained for over 2 months with periodic cellulose addition. Clarified rumen fluid and a soluble carbohydrate mixture, serving as the electron donors, could also sustain power output. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rRNA genes revealed that the microbial communities differed when different substrates were used in the MFCs. The anode-attached and the suspended consortia were shown to be different within the same MFC. Cloning and sequencing analysis of 16S rRNA genes indicated that the most predominant bacteria in the anode-attached consortia were related to Clostridium spp., while Comamonas spp. abounded in the suspended consortia. The results demonstrated that electricity can be generated from cellulose by exploiting rumen microorganisms as biocatalysts, but both technical and biological optimization is needed to maximize power output.  相似文献   

14.
Li C  Zhang L  Ding L  Ren H  Cui H 《Biosensors & bioelectronics》2011,26(10):4169-4176
Conductive polymer, one of the most attractive electrode materials, has been applied to coat anode of MFC to improve its performance recently. In this paper, two conductive polymer materials, polyaniline (PANI) and poly(aniline-co-o-aminophenol) (PAOA) were used to modify carbon felt anode and physical and chemical properties of the modified anodes were studied. The power output and biodiversity of modified anodes, along with unmodified carbon anode were compared in two-chamber MFCs. Results showed that the maximum power density of PANI and PAOA MFC could reach 27.4 mW/m(2) and 23.8 mW/m(2), comparing with unmodified MFC, increased by 35% and 18% separately. Low temperature caused greatly decrease of the maximum voltage by 70% and reduced the sorts of bacteria on anodes in the three MFCs. Anode biofilm analysis showed different bacteria enrichment: a larger mount of bacteria and higher biodiversity were found on the two modified anodes than on the unmodified one. For PANI anode, the two predominant bacteria were phylogenetically closely related to Hippea maritima and an uncultured clone MEC_Bicarb_Ac-008; for PAOA, Clostridiales showed more enrichment. Compare PAOA with PANI, the former introduced phenolic hydroxyl group by copolymerization o-aminophenol with aniline, which led to a different microbial community and the mechanism of group effect was proposed.  相似文献   

15.
Surface modifications of anode materials are important for enhancing power generation of microbial fuel cell (MFC). Membrane free single-chamber air-cathode MFCs, MFC-A and MFC-N, were constructed using activated carbon fiber felt (ACF) anodes treated by nitric acid and ethylenediamine (EDA), respectively. Experimental results showed that the start-up time to achieve the maximum voltages for the MFC-A and MFC-N was shortened by 45% and 51%, respectively as compared to that for MFC-AT equipped with an unmodified anode. Moreover, the power output of MFCs with modified anodes was significantly improved. In comparison with MFC-AT which had a maximum power density of 1304 mW/m2, the MFC-N achieved a maximum power density of 1641 mW/m2. The nitric acid-treated anode in MFC-A increased the power density by 58% reaching 2066 mW/m2. XPS analysis of the treated and untreated anode materials indicated that the power enhancement was attributable to the changes of surface functional groups.  相似文献   

16.
Four microbial fuel cells (MFCs) inoculated with different bacterial species were constructed. The species were Pseudomonas putida, Comamonas testosteroni, Corynebacterium gultamicum, and Arthrobacter polychromogenes. The MFCs were operated under identical continuous flow conditions. The factors affecting the capabilities of the MFCs for treating organic matter and generating power were evaluated and compared. The factors include microbial species type, organic loading, and substrate degradation rate. For all four MFCs, power output increased with the organic loading rate. Power density also increased with the substrate degradation rate. These findings implied that more organic matter was utilized for power generation at higher organic loading and substrate degradation rates. However, coulombic efficiency increased with decreased organic loading and substrate degradation rates. Apparently, all four MFCs had low efficiencies in generating power from organic matter. These low efficiencies are attributed to the long distance between the anode and the cathode, as well as to the small ratio of the proton exchange membrane surface area to the anode chamber surface area. These features may have caused most of the protons produced in the anode chamber to leave the chamber with the effluent, which led to the low power generation performance of the MFCs.  相似文献   

17.
The performance and dynamics of the bacterial communities in the biofilm and suspended culture in the anode chamber of sucrose-fed microbial fuel cells (MFCs) were studied by using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes followed by species identification by sequencing. The power density of MFCs was correlated to the relative proportions of species obtained from DGGE analysis in order to detect bacterial species or taxonomic classes with important functional role in electricity production. Although replicate MFCs showed similarity in performance, cluster analysis of DGGE profiles revealed differences in the evolution of bacterial communities between replicate MFCs. No correlation was found between the proportion trends of specific species and the enhancement of power output. However, in all MFCs, putative exoelectrogenic denitrifiers and sulphate-reducers accounted for approximately 24% of the bacterial biofilm community at the end of the study. Pareto–Lorenz evenness distribution curves extracted from the DGGE patterns obtained from time course samples indicated community structures where shifts between functionally similar species occur, as observed within the predominant fermentative bacteria. These results suggest the presence of functional redundancy within the anodic communities, a probable indication that stable MFC performance can be maintained in changing environmental conditions. The capability of bacteria to adapt to electricity generation might be present among a wide range of bacteria.  相似文献   

18.
Performances of microbial fuel cells (MFCs) were studied at 5–10 and 25–30 °C. Results showed stable operation of the MFCs at low temperatures with only slight reductions of voltage and power generation (11 versus 14 % for double-chamber MFC, while 14 versus 21 % for single-chamber MFC, 1,000 Ω) compared to those at mesophilic temperatures. MFCs operated at low temperatures showed lower COD removal rates accompanied by higher coulombic efficiencies (CEs). PCR-DGGE analysis revealed that psychrotrophic microbes (mainly Arcobacter, Pseudomonas, and Geobacter) dominated on anodes of the MFCs at low temperatures. Interestingly, light-induced red substances appeared on anode of the MFCs operated at low temperature and were proven to be the main anodic microbes (Arcobacter and Pseudomonas). Co-existence of the aforementioned microbes could assist stable low-temperature operation of the MFCs. Cyclic voltammetry analysis supported the results of the CE and DGGE. Stable performance of MFCs at low temperatures might be achieved by the control of anodic bacteria.  相似文献   

19.
Microbial electrochemical cells including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are novel biotechnological tools that can convert organic substances in wastewater or biomass into electricity or hydrogen. Electroactive microbial biofilms used in this technology have ability to transfer electrons from organic compounds to anodes. Evaluation of biofilm formation on anode is crucial for enhancing our understanding of hydrogen generation in terms of substrate utilization by microorganisms. In this study, furfural and hydroxymethylfurfural (HMF) were analyzed for hydrogen generation using single chamber membrane-free MECs (17 mL), and anode biofilms were also examined. MECs were inoculated with mixed bacterial culture enriched using chloroethane sulphonate. Hydrogen was succesfully produced in the presence of HMF, but not furfural. MECs generated similar current densities (5.9 and 6 mA/cm2 furfural and HMF, respectively). Biofilm samples obtained on the 24th and 40th day of cultivation using aromatic compounds were evaluated by using epi-fluorescent microscope. Our results show a correlation between biofilm density and hydrogen generation in single chamber MECs.  相似文献   

20.
阳极作为微生物燃料电池中的重要组成部分,其性能的高低显著影响着微生物燃料电池的产电性能。纳米材料具有导电性好、表面积大等优良特性。因此,纳米材料修饰阳极能够有效减小电极内阻、增大微生物的粘附量,从而显著提高微生物燃料电池的产电性能。本文首先简要介绍了微生物燃料电池中阳极修饰纳米材料的种类,然后重点归纳了不同纳米材料修饰阳极对微生物燃料电池产电性能的影响及其原因。最后对微生物燃料电池阳极修饰纳米材料和技术进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号