首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
2.
A sensitive and stereospecific HPLC method was developed for the analysis of (−)- and (+)-pentazocine in human serum. The assay involves the use of a phenyl solid-phase extraction column for serum sample clean-up prior to HPLC analysis. Chromatographic resolution of the pentazocine enantiomers was performed on a octadecylsilane column with sulfated-β-cyclodextrin (S-β-CD) as the chiral mobile phase additive. The composition of the mobile phase was aqueous 10 mM potassium dihydrogenphosphate buffer pH 5.8 (adjusted with phosphoric acid)–absolute ethanol (80:20, v/v) containing 10 mM S-β-CD at a flow-rate of 0.7 ml/min. Recoveries of (−)- and (+)-pentazocine were in the range of 91–93%. Linear calibration curves were obtained in the 20–400 ng/ml range for each enantiomer in serum. The detection limit based on S/N=3 was 15 ng/ml for each pentazocine enantiomer in serum with UV detection at 220 nm. The limit of quantitation for each enantiomer was 20 ng/ml. Precision calculated as R.S.D. and accuracy calculated as error were in the range 0.9–7.0% and 1.2–6.2%, respectively, for the (−)-enantiomer and 0.8– 7.6% and 1.2–4.6%, respectively, for the (+)-enantiomer (n=3).  相似文献   

3.
An enhancement of 17α-hydroxyprogesterone (17α-HP) production from progesterone by biotransformation using hydroxypropyl-β-cyclodextrin (HPβCD) complexation together with aeration and sonication technique was demonstrated. The progesterone–hydroxypropyl-β-cyclodextrin complex was prepared by co-evaporation method. The percentage yield of 17α-HP from P of 11.26 ± 0.64% at 24 h was observed in Curvularia lunata ATCC 12017. In the complex form of P, together with sonication at 40 kHz for 5 s and aeration, the yield of 17α-HP was increased to 72.92 ± 4.28% which was about 6.5 and 1.3 times of that from the uncomplexed (P) and the complexed (PC), respectively without sonication and aeration. The increased aqueous solubility of P by complexation with HPβCD was the main factor which increased the yield of 17α-HP, while aeration had more effect on P than PC. Sonication did not significantly increased the yield of the product from both P and PC. When both aeration and sonication were used in the PC system, the product yield was increased significantly more than that from P. The result from this study can be applied for the biotransformation of other poor aqueous soluble precursors.  相似文献   

4.
The enantiomeric separation of metoprolol and its metabolites in human urine was undertaken using capillary electrophoresis (CE). Resolution of the enantiomers was achieved using carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral selector. A 100-mM acetate buffer (pH 4.0) containing 5% 2-propanol and 10 mM CM-β-CD resulted in the optimum separation of the metoprolol enantiomers and its acidic metabolite in human urine. Following a single metoprolol oral administration of 100 mg racemic metoprolol tartrate, stereoselective pharmacokinetic analysis showed that urinary acidic metabolite 3 of metoprolol accounted for 62.3% of the dose with an R/S ratio of 1.23 and urinary unchanged metoprolol 1 accounted for 6.3% of the dose with an R/S ratio of 0.72.  相似文献   

5.
A novel raw starch degrading α-cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19), produced by Klebsiella pneumoniae AS-22, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The specific cyclization activity of the pure enzyme preparation was 523 U/mg of protein. No hydrolysis activity was detected when soluble starch was used as the substrate. The molecular weight of the pure protein was estimated to be 75 kDa with SDS-PAGE and gel filtration. The isoelectric point of the pure enzyme was 7.3. The enzyme was most active in the pH range 5.5–9.0 whereas it was most stable in the pH range 6–9. The CGTase was most active in the temperature range 35–50°C. This CGTase is inherently temperature labile and rapidly loses activity above 30°C. However, presence of soluble starch and calcium chloride improved the temperature stability of the enzyme up to 40°C. In presence of 30% (v/v) glycerol, this enzyme was almost 100% stable at 30°C for a month. The Km and kcat values for the pure enzyme were 1.35 mg ml−1 and 249 μM mg−1 min−1, respectively, with soluble starch as the substrate. The enzyme predominantly produced α-cyclodextrin without addition of any complexing agents. The conditions employed for maximum α-cyclodextrin production were 100 g l−1 gelatinized soluble starch or 125 g l−1 raw wheat starch at an enzyme concentration of 10 U g−1 of starch. The α:β:γ-cyclodextrins were produced in the ratios of 81:12:7 and 89:9:2 from gelatinized soluble starch and raw wheat starch, respectively.  相似文献   

6.
The heart rate response to isoproterenol (HR-Iso), density and affinity (kd) of β-adrenergic (β-AR) and muscarinic (M2) receptors were compared among three rodents with different generation-life histories of confinement and of high altitude exposure. The European guinea pig (Cavia porcellus) (EGp), a laboratory animal that arrived in Europe after the Spanish Conquest of South America and the Peruvian guinea pig (C. porcellus) (PGp), a semi-wild animal that came from the altiplano to sea level at least 25 generations ago, were used for intra-species comparison. Wistar rats (WR) were used for inter-species comparison as representative of a typical sea level laboratory animal. The HR-Iso was lower in EGp than in the PGp. The PGp showed the highest β-AR density (P<0.0005) and the highest β-AR kd values (P<0.0005) when compared to both EGp and WR groups (β-AR Bmax (fmol mg−1 prot), WR, 19±4; Egp, 34±10; PGp, 74±15. β-AR kd (pM), WR, 24±10; Egp, 17±7; PGp, 39±14). In contrast, PGp showed lower M2 receptor density values than the EGp (P<0.0005). The WR had the highest M2 receptor densities (M2 Bmax (fmol mg−1 prot), WR, 188±15; Egp, 147±9; PGp, 118±6 and M2 kd (pM), WR, 65±12; Egp, 67±6; PGp, 92±2). The inter and intra-species differences found may be related to their respective history of confinement rather than to their history of exposure to high altitude.  相似文献   

7.
Capillary electrophoresis was used for the separation of a combinatorially synthesized N-(substituted)-glycine (NSG) peptoid mixture. This mixture consisted of 24 trimeric compounds sharing a common backbone structure but differing in the side chain attached at the N-terminal residue. Standards of the individual components were unavailable so that development of the separation was based on the mixture. A variety of buffer additives were investigated to enhance the CE resolution of this diverse mixture. Ion-pairing agents, cyclodextrins and organic modifiers were all evaluated as buffer additives. The best separations were achieved using a combination of buffer additives, each serving a different purpose in the separation. Heptane sulphonic acid (HSA) was used to reduce hydrophobic intramolecular interactions. Methyl-β-cyclodextrin was used to provide host–guest interactions in order to resolve the very hydrophobic components of the NSG-peptoid mixture. The optimized run buffer consisted of 250 mM sodium phosphate buffer, pH 2.0, with 25 mM HSA and 40 mg/ml BCD and resulted in the resolution of 21 peaks for the 24 peptoids in the combinatorial mixture.  相似文献   

8.
An inclusion complex of the antimalarial artemether (ATM) in hydroxypropyl-β-cyclodextrin (HPβCD) was prepared and characterized. The phase-solubility diagram for the drug showed an increase in water solubility and gave an apparent binding constant of 220 M−1. According to 1H NMR and 2D NMR spectroscopy (ROESY), the inclusion mode involves two CH3 from the drug orientated in the HPβCD cavity. The complex was characterized by Powder X-ray diffraction and thermal analysis. In addition, the complex produces a 1.81-fold enhancement in apparent bioavailability compared to artemether.  相似文献   

9.
The electrophoretic behaviour of monophosphorylated nucleotide isomers can be manipulated using complex-forming reactions with β-cyclodextrin (β-CD) and borate. Resolution of the 2'- and 3'-isomers of nucleotides is possible when the electrophoresis buffer contains 10 mM CD. The effect of β-CD concentration on electrophoretic mobility is used to calculate the formation constant, K, of β-CD—nucleotide complexes. The 3'-isomer of adenosine monophosphate (AMP) forms the strongest complex with β-CD probably as a result of hydrogen bonding between the phosphate group of AMP and hydroxyls of β-CD. In addition, complexation of 5'-nucleotides with borate increases the migration time window and leads to better separation. Complex-forming reactions of guanosine monophosphate and uridine monophosphate are shown to be strongly dependent on buffer pH. A mixture of 12 monophosphorylated nucleotides can be separated in less than 15 min using a buffer of 20 mM borate—10 mM β-CD.  相似文献   

10.
An isocratic high-performance liquid chromatographic method has been developed to determine ciprofloxacin levels in chinchilla plasma and middle ear fluid. Ciprofloxacin and the internal standard, difloxacin, were separated on a Keystone ODS column (100 × 2.1 mm I.D., 5 μm Hypersil) using a mobile phase of 30 mM phosphate buffer (pH 3), 20 mM triethylamine, 20 mM sodium dodecyl sulphate—acetonitrile (60:40, v/v). The retention times were 3.0 min for ciprofloxacin and 5.2 min for difloxacin. This fast, efficient protein precipitation procedure together with fluorescence detection allows a quantification limit of 25 ng/ml with a 50 μl sample size. The detection limit is 5 ng/ml with a signal-to-noise ratio of 5:1. Recoveries (mean ± S.D., n = 5) at 100 ng/ml in plasma and middle ear fluid were 89.4 ± 1.2% and 91.4 ± 1.6%, respectively. The method was evaluated with biological samples taken from chinchillas with middle ear infections after administering ciprofloxacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号