首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four cases of Crouzon syndrome, one familial and three sporadic, were investigated for mutations in exon B of the fibroblast growth factor receptor 2 (FGFR2) gene. In the familial case, a mutation was found at codon 340 that exchanged tyrosine for histidine. Mutations at codon 342, detected in the three sporadic cases, replaced a cysteine by another amino acid. While three of the mutations have been described before, the fourth mutation, a CG transversion at codon 342 in one of the sporadic cases, has not been recognized previously. Compilation of all exon B mutations in Crouzon syndrome described to date revealed that 6 of the 8 sporadic and 2 of the 9 familial cases have mutations in codon 342. These mutations caused the substitution of cysteine for another amino acid. Given that a mutation in codon 342 was found in 8 out of 17 cases and that in 9 cases the mutation occurred at five additional positions, codon 342 of exon B of the FGFR2 gene may be predisposed to mutations in Crouzon syndrome.  相似文献   

2.
Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders in humans, and presents with a variety of clinical symptoms, which are highly variable in expression. The mutation rate for NF1 is high, with as many as half of all cases resulting from new mutations. Although the NF1 gene has been cloned and its cDNA sequence determined, the specific role of the NF1 gene product in contributing to the NF1 phenotype has not been clarified. The characterization of NF1 mutations is one of the first steps in correlating genotype with clinical symptoms of the disease. In this paper we describe two independent mutations in exon 31 of the NF1 gene identified following polymerase chain reaction (PCR) amplification, heteroduplexing, and single strand conformational polymorphism (SSCP) analysis. One is a novel insertion that segregates with the disease phenotype in that particular family (5852insTT), while the other is a further example of the sporadic, recurrent CT mutation previously described in the literature (C5842T). The relationship between these mutations and clinical features of NF1 presented by the patients will be discussed.  相似文献   

3.
We screened a total of 92 unrelated patients with neurofibromatosis type 1 (NF1) for mutations in exon 37 of the NF1 gene, by using temperature gradient gel electrophoresis. Two novel mutations were found: a 4 bp deletion in a so-called quasi-symmetric element (6789delTTAC) and a recurrent nonsense mutation, which was identified in two unrelated patients, at codon 2264 (C6792A). The independent origin of the latter mutation in two families was confirmed by haplotype analysis. The nonsense mutation and the 4 bp deletion are both predicted to lead to a truncated protein product lacking the Cterminal 20% (aproximately) of its sequence. The occurrence of three independent mutations among 92 NF1 patients at codons 2263–2264 (exon 37) suggests that a specific search for mutations in this area should be undertaken in screening programs for NF1 mutations.  相似文献   

4.
Neurofibromatosis type 1 (NF1) is characterized by cafe-au-lait spots, skinfold freckling, and cutaneous neurofibromas. No obvious relationships between small mutations (<20 bp) of the NF1 gene and a specific phenotype have previously been demonstrated, which suggests that interaction with either unlinked modifying genes and/or the normal NF1 allele may be involved in the development of the particular clinical features associated with NF1. We identified 21 unrelated probands with NF1 (14 familial and 7 sporadic cases) who were all found to have the same c.2970-2972 delAAT (p.990delM) mutation but no cutaneous neurofibromas or clinically obvious plexiform neurofibromas. Molecular analysis identified the same 3-bp inframe deletion (c.2970-2972 delAAT) in exon 17 of the NF1 gene in all affected subjects. The Delta AAT mutation is predicted to result in the loss of one of two adjacent methionines (codon 991 or 992) ( Delta Met991), in conjunction with silent ACA-->ACG change of codon 990. These two methionine residues are located in a highly conserved region of neurofibromin and are expected, therefore, to have a functional role in the protein. Our data represent results from the first study to correlate a specific small mutation of the NF1 gene to the expression of a particular clinical phenotype. The biological mechanism that relates this specific mutation to the suppression of cutaneous neurofibroma development is unknown.  相似文献   

5.
We report two familial cases of NF1 presenting as C to T transitions changing an Arg-1947 codon to a stop codon. In one of the two families, cosegregation of the mutation with NF1 was demonstrated, indicating this mutation causes the disease in this family. As the same mutation at Arg-1947 has been reported previously in three cases of unrelated Caucasians (two are sporadic; the origin of the other is not reported), the codon at Arg-1947 (CGA) in the NF1 gene is considered to be a hotspot common among different ethnic groups and also among familial and sporadic cases.  相似文献   

6.
Lee JD  Kwon TJ  Kim UK  Lee WS 《PloS one》2012,7(1):e30418

Background

Mutations in the neurofibromatosis type 2 (NF2) tumor-suppressor gene have been identified in not only NF2-related tumors but also sporadic vestibular schwannomas (VS). This study investigated the genetic and epigenetic alterations in tumors and blood from 30 Korean patients with sporadic VS and correlated these alterations with tumor behavior.

Methodology/Principal Findings

NF2 gene mutations were detected using PCR and direct DNA sequencing and three highly polymorphic microsatellite DNA markers were used to assess the loss of heterozygosity (LOH) from chromosome 22. Aberrant hypermethylation of the CpG island of the NF2 gene was also analyzed. The tumor size, the clinical growth index, and the proliferative activity assessed using the Ki-67 labeling index were evaluated. We found 18 mutations in 16 cases of 30 schwannomas (53%). The mutations included eight frameshift mutations, seven nonsense mutations, one in-frame deletion, one splicing donor site, and one missense mutation. Nine patients (30%) showed allelic loss. No patient had aberrant hypermethylation of the NF2 gene and correlation between NF2 genetic alterations and tumor behavior was not observed in this study.

Conclusions/Significance

The molecular genetic changes in sporadic VS identified here included mutations and allelic loss, but no aberrant hypermethylation of the NF2 gene was detected. In addition, no clear genotype/phenotype correlation was identified. Therefore, it is likely that other factors contribute to tumor formation and growth.  相似文献   

7.
We have screened a total of 105 unrelated patients with neurofibromatosis type l (NF1) for mutations in exon 28 of the NF1 gene using heteroduplex analysis and single strand conformation polymorphism analysis. One novel mutation has been identified and characterised. This mutation involves a 13-bp deletion (AAACTGGCTGAGC or AACTGGCTGAGCA) from base position 5077 (or 5078) to 5089 (or 5090) of the cDNA coding sequence. This alteration leads to a reading frame shift with a premature amber termination signal (TAG) at codon 1694. In addition, there is a change from lysine to threonine at codon 1693. The truncated gene product is estimated to be 1125 amino acid residues shorter than the predicted normal protein (2818 amino acids).  相似文献   

8.
Neurofibromatosis (NF) is a clinically heterogeneous autosomal dominant disorder. Three distinct forms have been identified: neurofibromatosis type 1 (NF1), type 2 (NF2) and schwannomatosis. In the present study, we report clinical and genetic findings in the NF1 and NF2 genes in a cohort of 27 Bulgarian patients, with 18 cases (67%) genetically verified. Both NF1 and NF2 genes were screened by Sanger sequencing on DNA samples. The Sanger negative samples were screened by Multiplex Ligation-dependent Probe Amplification (MLPA) for deletions and duplications. The results from genetic testing revealed three novel mutations and fifteen previously reported ones (13 in the NF1 gene and 2 in the NF2 gene). The novel variants in the NF1 gene are a splice site mutation c.4725-1G>A, a small deletion of five bases c.823delATCTT, p.Leu275ValfsTer14, and a single base duplication c.6547dupC, p.Arg2183ProfsTer11. The novel splice site mutation is manifested by multiple “café au lait” macules and neurofibromas. Both novel out of frame mutations were found in patients with multiple “café au lait” spots and focal epilepsy. A segmental neurofibromatosis (SNF1) is restricted to one or more body segments. Here we present a case with SNF1 caused by a somatic deletion of exons 1 to 12 of the NF1 gene which is manifested by multiple neurofibromas in the right hand. Two nonsense mutations are found in the NF2 gene. Our study adds three novel mutations to the NF1 mutation spectra and contributes to the clinical-genetic NF1-characterization. Here we report strikingly different phenotypic spectra caused by the same mutation in a single family. Our findings contribute to the genotype- phenotype correlations which are difficult to establish, due to the extremely complex NF phenotype being a combination of clinical features.  相似文献   

9.
X-linked juvenile retinoschisis (RS) is a bilateral vitreoretinal disorder with no known cure. The gene responsible for the disease was recently isolated by positional cloning methods and a spectrum of mutations has been described in families with RS pathology. In this report, we screened six sporadic cases of RS for mutations in the RS gene to understand the etiology of isolated cases. Our extensive studies revealed a novel 4 bp insertion in one family and the remaining families did not show mutations in the RS gene. This mutation altered the reading frame including codon 55 resulting in nine aberrant amino acid residues. The unaffected mother did not contain this mutation. Additionally, it was not found in 60 normal control chromosomes, suggesting that the insertion mutation is disease related in the family analyzed.  相似文献   

10.

Background

Pyknodysostosis (OMIM 265800) is a rare, autosomal recessive sclerosing skeletal dysplasia as a consequence of the diminished capacity of osteoclasts to degrade organic bone matrix. Pyknodysostosis is caused by mutation in the cathepsin K (CTSK) gene. Up to date, 34 different CTSK mutations have been identified in patients with Pyknodysostosis; however, only one mutation was previously identified in a Chinese patient. The objective of this study was to characterize the clinical manifestations and features of Pyknodysostosis and identify the mutation of the causative gene in a Chinese family with Pyknodysostosis.

Methods

We investigated a non-consanguineous Chinese family in which an 11-year-old child was affected with Pyknodysostosis. Altogether, 203 persons, including the affected individual, his parents and 200 healthy donors, were recruited and genomic DNA was extracted. All 8 exons of the CTSK gene, including the exon–intron boundaries, were amplified and sequenced directly.

Results

The proband displayed a novel homozygous missense mutation c.365G>A in exon 4 of the CTSK gene. This mutation leads to the substitution of the arginine at position 122 by glutamine (R122Q) in cathepsin K. The parents were heterozygous for this gene mutation, and the mutation was not found in the 200 unrelated controls.

Conclusion

Our study suggests that the novel missense mutation c.365G>A (R122Q) in exon 4 of CTSK gene was responsible for Pyknodysostosis in the Chinese family.  相似文献   

11.
Neurofibromatosis type 1 (NF1) is a common monogenic disorder whereby affected individuals are predisposed to developing CNS tumors, including optic pathway gliomas (OPGs, occurring in ~15 to 20 % of cases). So far, no definite genotype–phenotype correlation determining NF1 patients at risk for tumor formation has been described, although enrichment for mutations in the 5′ region of the NF1 gene in OPG patients has been suggested. We used whole exome sequencing, targeted sequencing, and copy number analysis to screen 77 unrelated NF1 patients with (n = 41) or without (n = 36; age ≥10 years) optic pathway glioma for germline NF1 alterations. We identified germline NF1 mutations in 69 of 77 patients (90 %), but no genotype–phenotype correlation was observed. Our data using a larger patient cohort did not confirm the previously reported clustering of mutations in the 5′ region of the NF1 gene in patients with OPG. Thus, NF1 mutation location should not currently be used as a clinical criterion to assess the risk of developing OPGs.  相似文献   

12.
Retinitis pigmentosa (RP) is a group of genetically heterogeneous retinal degenerations that can be autosomal dominant (ADRP), autosomal recessive (ARRP), or X-linked. Approximately 30% of ADRP patients show point mutations or small deletions in the rhodopsin gene. However, over 50% of the RP patients are simplex cases (sporadic). Screening for mutations in the rhodopsin gene of 33 patients with simplex RP by denaturing gradient gel electrophoresis (DGGE) was carried out. One patient, with D-type (diffuse) RP and consanguineous parents, showed an altered electrophoretic pattern for the 5 half of exon 1. Direct sequencing revealed a new mutation ATG to ACG in codon 44; this predicts a change of Met-44-Thr in rhodopsin. The position and amino acid substitution suggest that this mutation causes the RP phenotype. Implications for genetic counselling are discussed.  相似文献   

13.
14.
Neurofibromatosis type 2 (NF2) is an autosomal dominant cancer syndrome that predisposes to the development of bilateral vestibular schwannomas sometimes associated with schwannomas at other locations, meningiomas, ependymomas and juvenile posterior subcapsular lenticular opacities. This disease is caused by inactivating mutations in the NF2 tumour-suppressor gene, located in 22q12. Recently, somatic mosaicism has been demonstrated in some "de novo" NF2 patients. We here report the genetic study of 33 NF2 patients from 33 unrelated Italian families. Twelve mutations were characterised, including seven newly identified mutations and five recurrent ones. Furthermore, we describe one patient with an inactivating mutation that lies in exon 13 but that is present in only a portion of the lymphocytes and, more importantly, a clinically normal individual carrying a somatic/germinal mosaicism for a nonsense mutation in exon 10 of the NF2 gene. Our results confirm the relatively high percentage of mosaicism for mutations in the NF2 gene and establish the importance of evaluating genomic DNA from several tissues, in addition to lymphocytes, so as to identify mosaicism in "de novo" NF2 patients and their relatives. In addition, the demonstration of somatic and/or gonadal mosaicism is an important tool for accurate genetic counselling in families with sporadic cases of NF2.  相似文献   

15.
Hereditary hearing impairment is an extremely heterogeneous trait, with more than 70 identified loci. Only two of these loci are associated with an auditory phenotype that predominantly affects the low frequencies (DFNA1 and DFNA6/14). In this study, we have completed mutation screening of the WFS1 gene in eight autosomal dominant families and twelve sporadic cases in which affected persons have low-frequency sensorineural hearing impairment (LFSNHI). Mutations in this gene are known to be responsible for Wolfram syndrome or DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), which is an autosomal recessive trait. We have identified seven missense mutations and a single amino acid deletion affecting conserved amino acids in six families and one sporadic case, indicating that mutations in WFS1 are a major cause of inherited but not sporadic low-frequency hearing impairment. Among the ten WFS1 mutations reported in LFSNHI, none is expected to lead to premature protein truncation, and nine cluster in the C-terminal protein domain. In contrast, 64% of the Wolfram syndrome mutations are inactivating. Our results indicate that only non-inactivating mutations in WFS1 are responsible for non-syndromic low-frequency hearing impairment.  相似文献   

16.
Summary -Thalassemia mutations in 71 chromosomes of Thai patients from the northeast, the middle and the south of the country were investigated using dot blot hybridization of PCR (polymerase chain reaction)-amplified DNA with allelespecific oligonucleotide probes. Eight different known molecular defects were detected, at different frequencies. There was an amber mutation in codon 17, a C-T transversion at position 654 of IVS-2, a frameshift mutation between codons 71 and 72, an A-G transition at nucleotide -28 within the TATA box (known as Chinese mutations), a G-T transversion at position 1 of IVS-1 (an Indian mutation), a 4bp deletion in codons 41/42 and a G-C transversion at position 5 of IVS-1 (described as both Chinese and Indian mutations) and a Thai original mutation, an ochre mutation in codon 35. Analysis of the three unknown alleles by DNA sequencing of the cloned DNA fragment amplified by PCR revealed an A-G substitution at the second position of the codon for amino acid 19 (AAC-AGC). The analytic approach used in the present study and the characteristic distribution of mutations in each region of Thailand will prove useful for setting up a prenatal diagnosis program.  相似文献   

17.
The amyloid precursor protein (APP) gene codes for the precursor to the beta-protein found in the amyloid deposits of Alzheimer disease (AD). Recently Goate et al. identified in codon 717 of this gene a missense mutation which segregates with AD in a familial AD (FAD) kindred. The same mutation was also found in affected subjects from a second FAD family but not in other FAD families or in normal controls. The following work was undertaken to determine the frequency of the codon 717 mutation in FAD and nonfamilial AD cases and in normal controls. We tested 76 FAD families, 127 "sporadic" AD subjects, 16 Down syndrome cases, and 256 normal controls for this mutation, and none were positive. We also tested for the APP codon 693 mutation associated with hereditary cerebral hemorrhage with amyloidosis-Dutch type, for PRIP gene missense mutations at codons 102, 117, and 200, and for the PRIP insertion mutations which are associated with Creutzfeld-Jakob disease and Gerstmann-Straussler Scheinker syndrome. No examples of these mutations were found in our population. Thus these APP and PRIP mutations are rare in both FAD and nonfamilial AD.  相似文献   

18.
Tricho-rhino-phalangeal syndrome (TRPS) is a rare autosomal dominant and monogenic disease. Among three types of TRPS, it is known that TRPS type I and type III are caused by deletions or substitutions in the TRPS1 gene, located on chromosome 8 (8q23.3). Although the mutations in TRPS1 gene are responsible for human TRPS, some cases are not detected by the mutations of TRPS1 gene and several cases are presented with different genetic variations. The present case was a sporadic and without TRPS1 mutation. Therefore, we performed whole-exome sequencing (WES) with one patient and his family (father, mother, and brother) and validated novel mutations using PCR and Sanger sequencing. Through family-based WES, we found the two de novo mutations such as ZNF 134 and EXD 3 genes. Through functional effect prediction using disease association Ensembl database, we propose that the de novo mutation of ZNF134 (p.Ser207Arg) could be one of potential candidate genes for causing TRPS and develope the TRPS phenotype in the present case.  相似文献   

19.
Familial hypercholesterolemia is caused by mutations in the low density lipoprotein (LDL) receptor gene. Analysis of single-strand conformation polymorphisms of exons 10 and 11 of the LDL receptor gene from familial hypercholesterolemia heterozygotes indicated the presence of two mutations, which were characterized by DNA sequencing. One mutation (N466) was a 3-bp deletion in exon 10 that deletes Asn in codon 466. The other (intron 11+1,GT) was a splice donor mutation at position +1 of intron 11.  相似文献   

20.
NF1 is a tumour suppressor gene, germline mutations of which lead to neurofibromatosis type 1 syndrome. Patients develop benign tumours from several types of cells including neural crest‐derived cells. NF1 somatic mutations also occur in 15% of sporadic melanoma, a cancer originating from melanocytes. Evidence now suggests the involvement of NF1 mutations in melanoma resistance to targeted therapies. Although NF1 is ubiquitously expressed, genetic links between NF1 and genes involved in melanocyte biology have been described, implying the lineage‐specific mechanisms. In this review, we summarize and discuss the latest advances related to the roles of NF1 in melanocyte biology and in cutaneous melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号